• Title/Summary/Keyword: Numerical Computation

Search Result 1,368, Processing Time 0.026 seconds

Further Improvement of Direct Solution-based FETI Algorithm (직접해법 기반의 FETI 알고리즘의 개선)

  • Kang, Seung-Hoon;Gong, DuHyun;Shin, SangJoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.249-257
    • /
    • 2022
  • This paper presents an improved computational framework for the direct-solution-based finite element tearing and interconnecting (FETI) algorithm. The FETI-local algorithm is further improved herein, and localized Lagrange multipliers are used to define the interface among its subdomains. Selective inverse entry computation, using a property of the Boolean matrix, is employed for the computation of the subdomain interface stiffness and load, in which the original FETI-local algorithm requires a full matrix inverse computation of a high computational cost. In the global interface computation step, the original serial computation is replaced by a parallel multi-frontal method. The performance of the improved FETI-local algorithm was evaluated using a numerical example with 64 million degrees of freedom (DOFs). The computational time was reduced by up to 97.8% compared to that of the original algorithm. In addition, further stable and improved scalability was obtained in terms of a speed-up indicator. Furthermore, a performance comparison was conducted to evaluate the differences between the proposed algorithm and commercial software ANSYS using a large-scale computation with 432 million DOFs. Although ANSYS is superior in terms of computational time, the proposed algorithm has an advantage in terms of the speed-up increase per processor increase.

Improved Trajectory Calculation on the Semi-Lagrangian Advection Computation (Semi-Lagrangian 이류항 계산의 추적법 개선)

  • Park, Su-Wan;Baek, Nak-Hoon;Ryu, Kwan-Woo
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.419-426
    • /
    • 2009
  • To realistically simulate fluid, the Navier-Stokes equations are generally used. Solving these Navier-Stokes equations on the Eulerian framework, the non-linear advection terms invoke heavy computation and thus Semi-Lagrangian methods are used as an approximated way of solving them. In the Semi-Lagrangian methods, the locations of advection sources are traced and the physical values at the traced locations are interpolated. In the case of Stam's method, there are relatively many chances of numerical losses, and thus there have been efforts to correct these numerical errors. In most cases, they have focused on the numerical interpolation processes, even simultaneously using particle-based methods. In this paper, we propose a new approach to reduce the numerical losses, through improving the tracing method during the advection calculations, without any modifications on the Eulerian framework itself. In our method, we trace the grids with the velocities which will let themselves to be moved to the current target position, differently from the previous approaches, where velocities of the current target positions are used. From the intuitive point of view, we adopted the simple physical observation: the physical quantities at a specific position will be moved to the new location due to the current velocity. Our method shows reasonable reduction on the numerical losses during the smoke simulations, finally to achieve real-time processing even with enhanced realities.

Comparison of Parallel Computation Performances for 3D Wave Propagation Modeling using a Xeon Phi x200 Processor (제온 파이 x200 프로세서를 이용한 3차원 음향 파동 전파 모델링 병렬 연산 성능 비교)

  • Lee, Jongwoo;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • In this study, we simulated 3D wave propagation modeling using a Xeon Phi x200 processor and compared the parallel computation performance with that using a Xeon CPU. Unlike the 1st generation Xeon Phi coprocessor codenamed Knights Corner, the 2nd generation x200 Xeon Phi processor requires no additional communication between the internal memory and the main memory since it can run an operating system directly. The Xeon Phi x200 processor can run large-scale computation independently, with the large main memory and the high-bandwidth memory. For comparison of parallel computation, we performed the modeling using the MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) libraries. Numerical examples using the SEG/EAGE salt model demonstrated that we can achieve 2.69 to 3.24 times faster modeling performance using the Xeon Phi with a large number of computational cores and high-bandwidth memory compared to that using the 12-core CPU.

An Efficient Application of XML Schema Matching Technique to Structural Calculation Document of Bridge (XML 스키마 매칭 기법의 교량 구조계산서 적용 방안)

  • Park, Sang Il;Kim, Bong-Geun;Lee, Sang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.51-59
    • /
    • 2012
  • An efficient application method of XML schema matching technique to the document structure of structural calculation document (SCD) of bridge is proposed. With 30 case studies, a parametric study on weightings of name, sibling, child, and parent elements of XML scheme component that are used in the similarity measure of XML schema matching technique has been performed, and suitable weighting to analyze document structure of SCD is suggested. A simplified formula for quantification of similarity is also introduced to reduce computation time in huge scale document structure of SCDs. Numerical experiments show that the suggested method can increase the accuracy of XML schema matching by 10% with suitable weighting parameters, and can maintain almost the same accuracy without weighting parameters compared to previous studies. In addition, computation time can be reduced dramatically when the proposed simplified formula for the quantification of similarity is used. In the numerical experiments of testing 20 practical SCDs of bridges, the suggested method is superior to previous studies in the accuracy of analyzing document structure and 4 to 460 times faster than the previous results in computation time.

Prediction of Thermo-acoustic Oscillation Characteristics in a Ducted Combustor (관형 연소기의 열-음향 진동에 의한 소음 특성 예측)

  • 김재헌;이정한;이수갑;정인석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.56-66
    • /
    • 1999
  • Thermoacoustic oscillation is a significant problem in cylindrical-type combustors such as common internal combustion engines, industrial furnaces, gas turbine, etc. This kind of low frequency oscillation can lead to serious consequences such as destruction of the combustor and production of strong noise. The accurate numerical simulation of thermoacoustic phenomena is a complex and challenging problem, especially when considering the chemical reaction of mixtures. As with other simulations of aerodynamics and aeroacoustics, the direct computation of thermoacoustic phenomena requires that Navier-Stokes equations be solved using accurate numerical differentiation and time-marching schemes, with non-reflecting boundary conditions. The numerical approach used here aims at qualitative analysis and efficient prediction of those problems, not at the development of an accurate scheme. The numerical prediction developed in this work is shown to be reasonably matched with experimental result.

  • PDF

Logic circuit design for high-speed computing of dynamic response in real-time hybrid simulation using FPGA-based system

  • Igarashi, Akira
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1131-1150
    • /
    • 2014
  • One of the issues in extending the range of applicable problems of real-time hybrid simulation is the computation speed of the simulator when large-scale computational models with a large number of DOF are used. In this study, functionality of real-time dynamic simulation of MDOF systems is achieved by creating a logic circuit that performs the step-by-step numerical time integration of the equations of motion of the system. The designed logic circuit can be implemented to an FPGA-based system; FPGA (Field Programmable Gate Array) allows large-scale parallel computing by implementing a number of arithmetic operators within the device. The operator splitting method is used as the numerical time integration scheme. The logic circuit consists of blocks of circuits that perform numerical arithmetic operations that appear in the integration scheme, including addition and multiplication of floating-point numbers, registers to store the intermediate data, and data busses connecting these elements to transmit various information including the floating-point numerical data among them. Case study on several types of linear and nonlinear MDOF system models shows that use of resource sharing in logic synthesis is crucial for effective application of FPGA to real-time dynamic simulation of structural response with time step interval of 1 ms.

Numerical Modeling of 1g Shaking Table Model Pile Tests for Evaluating Dynamic Soil-Pile Interaction (지반-말뚝 동적 상호 작용 평가를 위한 1g 진동대 실험의 수치 모델링)

  • Oh, Man-Kyo;Kim, Seong-Hwan;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.173-183
    • /
    • 2010
  • Numerical analysis using a three dimensional finite element program(ABAQUS) is a powerful method which can evaluate the soil-pile-structure interaction under the dynamic loading and reduce the computation time significantly, but has not be widely used because modeling a soil-pile system and setting the parameter for the entire model are difficult and a three dimensional finite element program is not user friendly. However, a three dimensional finite element program is expected to be widely used because of advance in research of modeling technique and development of the modeling and visualization. In this study, ABAQUS is used to simulate the 1g shaking table model pile test, and the numerical results are compared with the 1g shaking table test results. The application about the soil stiffness and boundary condition change is estimated and then parametric study for various input acceleration amplitudes, various input frequencies, and various surcharge is carried out.

  • PDF

A Numerical Investigation of External and Internal Heat Transfer in A High Subsonic in Turbine Cascade (고 아음속 터빈 깃 주위의 열유동 및 내부 열전달에 관한 수치해석 연구)

  • Kim, Woo-Jin;Kim, Hyun-Shik;Kwak, Jae-Su;Kim, Hark-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • Developments of numerical methods are very important to design and analysis for a high subsonic turbine blade. In general, Analysis by experimental investigation has needed a lot of human resources and required time, indispensably, and equipments still have a limit to measure in conditions of high temperature. Rapid technological developments of CPU and integration level of memory make it possible to advance computation with almost exactly simulation so, recent developments of numerical methods are in spotlight. In the present study, the panel method, which is well-known as relatively simplified numerical method, and 2-dimensional ordinary differential Falkner-Skan equation were computed in order to analyze the outer flow, and FVM-based solid heat transfer equation, was also computed to forecast the temperature distribution of the airfoil and the turbine blade. Unstructured grid was constructed in the turbine blade, which has double cooling holes, in order to analyze the internal heat transfer. Cooling fluid was assumed as fully-developed turbulent flow and that circulated in cooling holes.

Wave Force Analysis of the Three Vertical Cylinders in Water Waves

  • Kim, Nam-Hyeong;Cao, Tan Ngoc Than
    • Journal of Navigation and Port Research
    • /
    • v.32 no.7
    • /
    • pp.543-552
    • /
    • 2008
  • The diffraction of waves by three bottom fixed vertical circular cylinders is investigated by using the boundary element method. This method has been successfully applied to the isolated vertical circular cylinder and now is used to study the interaction between waves and multiple vertical cylinders. In this paper, a numerical analysis by the boundary element method is developed by the linear potential theory. The numerical analysis by the boundary element method is based on Green's second theorem and introduced to an integral equation for the fluid velocity potential around the vertical circular cylinders. To verify this method, the results obtained in present study are compared with the results computed by the multiple scattering method. The results of the comparisons show strong agreement. Also in this paper, several numerical examples are given to illustrate the effects of various parameters on the wave exciting force such are the separation distance, the wave number and the incident wave angle. This numerical computation method might be used broadly for the design of various offshore structures to be constructed in the future.

Validation of Numerical Model for the Wind Flow over Real Terrain (실지형을 지나는 대기유동에 대한 수치모델의 검증)

  • Kim, Hyeon-Gu;Lee, Jeong-Muk;No, Yu-Jeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.219-228
    • /
    • 1998
  • In the present investigation, a numerical model developed for the prediction of the wind flow over complex terrain is validated by comparing with the field experiments. For the solution of the Reynolds - Averaged Clavier- stokes equations which are the governing equations of the microscale atmospheric flow, the model is constructed based on the finite-volume formulation and the SIMPLEC pressure-correction algorithm for the hydrodynamic computation. The boundary- fitted coordinate system is employed for the detailed depiction of topography. The boundary conditions and the modified turbulence constants suitable for an atmospheric boundary- layer are applied together with the k- s turbulence model. The full- scale experiments of Cooper's Ridge, Kettles Hill and Askervein Hill are chosen as the validation cases . Comparisons of the mean flow field between the field measurements and the predicted results show good agreement. In the simulation of the wind flow over Askervein Hill , the numerical model predicts the three dimensional flow separation in the downslope of the hill including the blockage effect due to neighboring hills . Such a flow behavior has not been simulated by the theoretical predictions. Therefore, the present model may offer the most accurate prediction of flow behavior in the leeside of the hill among the existing theoretical and numerical predictions.

  • PDF