• 제목/요약/키워드: Numerical Behaviour

검색결과 859건 처리시간 0.041초

Experimental and numerical analysis of the global behaviour of the 1:9 scale model of the Old Bridge in Mostar

  • Kustura, Mladen;Smoljanovic, Hrvoje;Nikolic, Zeljana;Krstevska, Lidija
    • Coupled systems mechanics
    • /
    • 제10권1호
    • /
    • pp.1-19
    • /
    • 2021
  • Composite nature of the masonry structures in general causes complex and non-linear behaviour, especially in intense vibration conditions. The presence of different types and forms of structural elements and different materials is a major problem for the analysis of these type of structures. For this reason, the analysis of the behaviour of masonry structures requires a combination of experimental tests and non-linear mathematical modelling. The famous UNESCO Heritage Old Bridge in Mostar was selected as an example for the analysis of the global behaviour of reinforced stone arch masonry bridges. As part of the experimental research, a model of the Old Bridge was constructed in a scale of 1:9 and tested on a shaking table platform for different levels of seismic excitation. Non-linear mathematical modelling was performed using a combined finite-discrete element method (FDEM), including the effect of connection elements. The paper presents the horizontal displacement of the top of the arch and the failure mechanism of the Old Bridge model for the experimental and the numerical phase, as well as the comparison of the results. This research provided a clearer insight into the global behaviour of stone arch masonry structures reinforced with steel clamps and steel dowels, which is significant for the structures classified as world cultural heritage.

The behaviour of structures under fire - numerical model with experimental verification

  • Toric, Neno;Harapin, Alen;Boko, Ivica
    • Steel and Composite Structures
    • /
    • 제15권3호
    • /
    • pp.247-266
    • /
    • 2013
  • This paper presents a comparison of results obtained by a newly developed numerical model for predicting the behaviour of structures under fire with experimental study carried out on heated and simply supported steel beam elements. A newly developed numerical model consists of three submodels: 3D beam model designed for calculating the inner forces in the structure, 2D model designed for calculation of stress and strain distribution over the cross section, including the section stiffness, and 3D transient nonlinear heat transfer model that is capable of calculating the temperature distribution along the structure, and the distribution over the cross section as well. Predictions of the calculated temperatures and vertical deflections obtained by the numerical model are compared with the results of the inhouse experiment in which steel beam element under load was heated for 90 minutes.

Numerical simulation of masonry shear panels with distinct element approach

  • Zhuge, Y.;Hunt, S.
    • Structural Engineering and Mechanics
    • /
    • 제15권4호
    • /
    • pp.477-493
    • /
    • 2003
  • Masonry is not a simple material, the influence of mortar joints as a plane of weakness is a significant feature and this makes the numerical modelling of masonry very difficult especially when dynamic (seismic) analysis is involved. In order to develop a simple numerical model for masonry under earthquake load, an analytical model based on Distinct Element Method (DEM) is being developed. At the first stage, the model is applied to simulate the in-plane shear behaviour of an unreinforced masonry wall with and without opening where the testing results are available for comparison. In DEM, a solid is represented as an assembly of discrete blocks. Joints are modelled as interface between distinct bodies. It is a dynamic process and specially designed to model the behaviour of discontinuities. The numerical solutions obtained from the distinct element analysis are validated by comparing the results with those obtained from existing experiments and finite element modelling.

Numerical simulation of the effect of section details and partial streamlining on the aerodynamics of bridge decks

  • Bruno, L.;Khris, S.;Marcillat, J.
    • Wind and Structures
    • /
    • 제4권4호
    • /
    • pp.315-332
    • /
    • 2001
  • Presented herein is a numerical study for evaluating the aerodynamic behaviour of equipped bridge deck sections. In the first part, the method adopted is described, in particular concerning turbulence models, meshing requirements and numerical approach. The validation of the procedure represents the aim of the second part of the paper: the results of the numerical simulation in case of two-dimensional, steady, incompressible, turbulent flow around a realistic bridge deck are compared to the data collected from wind-tunnel tests. In order to demonstrate the influence of the section details and of the partial streamlining of the deck geometry on its aerodynamic behaviour, in the third part of the paper the effect of the fairings and of each item of equipment of the section (such as central barriers, side railings and sidewalks) is evaluated. The study has been applied to the deck section of the Normandy cable-stayed bridge.

Characteristic features of concrete behaviour: Implications for the development of an engineering finite-element tool

  • Kotsovos, Michael D.;Pavlovic, Milija N.;Cotsovos, Demetrios M.
    • Computers and Concrete
    • /
    • 제5권3호
    • /
    • pp.243-260
    • /
    • 2008
  • The present article summarises the fundamental characteristics of concrete behaviour which underlie the formulation of an engineering finite element model capable of realistically predicting the behaviour of (plain or reinforced) concrete structural forms in a wide range of problems ranging from static to impact loading without the need of any kind of re-calibration. The already published evidence supporting the proposed formulation is complemented by four additional typical case studies presented herein; for each case, a comparative study is carried out between numerical predictions and the experimental data which reveals good agreement. Such evidence validates the material characteristics upon which the FE model's formulation is based and provides an alternative explanation regarding the behaviour of structural concrete and how it should be modelled which contradicts the presently (widely) accepted assumptions adopted in the majority of FE models used to predict the behaviour of concrete.

수평배수공법에 의해 개량된 준설점토지반의 압밀거동에 관한 연구 (Consolidation Behaviour of Dredged Clay Ground Improved by Horizontal Drain Method)

  • 김형주;원명수
    • 한국지반공학회지:지반
    • /
    • 제13권1호
    • /
    • pp.137-146
    • /
    • 1997
  • A Study on the 본 연구에서는 플라스틱드레인을 이용하여 진공수평배수에 의해 개량된 준설 점토 지반의 압밀거동을 파악하기 위하여 대형 압밀시험을 실시하였으며, 실험 결과가 포텐결중공원주의 압밀이론을 이용한 수치해석에 의해 비교 검토되었다. 본 연구 실험결과에 의하면 수평배수진공압밀시험은 점토층 내부의 함수비 및 간극수압과 드레인 배수 속도 등이 진공압밀 시간 경과에 따라 감소되어 압밀이 급속하게 진행되고 있음이 확인되었다. 점토층 중공원주의 방사류에 대한 선형포텐샬압밀이론을 이용하여 수치 압밀해석 결과 간극수압은 확산 형태보다 흙의 변형과 투수에 의해 크게 좌우되고 있으므로, 지표면 부근에서의 실측 침하량은 압밀응력증가율 a가 -0.5정도에서 수치해석과 일치하며 또한 드레인 설치 부근에서의 점토층 침하량은 Baryon 압밀이론과 유사한 거동을 나타내고 있다. 최종적으로 수평 배수에 대한 적당한 선택과정을 포함한 설계 및 시공관리가 시험결과에 의하여 설명 되었으며 포텐셜압밀이론은 진공배수시 수평드레인에 의한 압밀거동을 정확하게 예측할 수 있다.

  • PDF

내재적 경계 조건을 이용한 자유표면 유동 수치해석 (Numerical Simulation on the Free Surface using implicit boundary condition)

  • 이공희;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.156-161
    • /
    • 1998
  • This describes a numerical method for predicting the incompressible unsteady laminar three-dimensional flows of fluid behaviour with free-surface. The elliptic differential equations governing the flows have been linearized by means of finite-difference approximations, and the resulting equations have been solved via a fully-implicit iterative method. The free-surface is defined by the motion of a set of marker particles and interface behaviour was investigated by way of a 'Lagrangian' technique. Using the GALA concept of Spalding, the conventional mass continuity equation is modified to form a volumetric or bulk-continuity equation. The use of this bulk-continuity relation allows the hydrodynamic variables to be computed over the entire flow domain including both liquid and gas regions. Thus, the free-surface boundary conditions are imposed implicitly and the problem formulation is greatly simplified. The numerical procedure is validated by comparing the predicted results of a periodic standing waves problems with analytic solutions or experimental results from the literature. The results show that this numerical method produces accurate and physically realistic predictions of three-dimensional free-surface flows.

  • PDF

Behaviour of vertically and horizontally loaded pile and adjacent ground affected by tunnelling

  • Oh, Dong-Wook;Ahn, Ho-Yeon;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • 제15권3호
    • /
    • pp.861-868
    • /
    • 2018
  • Recent occurrences of earthquakes in Korea have increased the importance of considering how horizontal loads affect foundation structures as a result of wind and dynamic impact. However, to date, there are few studies on tunnelling-induced behaviour of ground and pile structures simultaneously subjected to horizontal and vertical loads. In this research, therefore, the behaviour of ground and single piles due to tunnelling were investigated through a laboratory model test. Three cases of horizontal loads were applied to the top of the pile. In addition, a numerical analysis was carried out to analyse and compare with the results from the laboratory model test.

Effect of model calibration on seismic behaviour of a historical mosque

  • Demir, Ali;Nohutcu, Halil;Ercan, Emre;Hokelekli, Emin;Altintas, Gokhan
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.749-760
    • /
    • 2016
  • The objective of the study is to investigate the effects of model calibration on seismic behaviour of a historical mosque which is one of the most significant Ottomon structures. Seismic analyses of calibrated and noncalibrated numeric models were carried out by using acceleration records of Kocaeli earthquake in 1999. In numerical analysis, existing crack zones on real structure was investigated in detail. As a result of analyses, maximum stresses and displacements of calibrated and noncalibrated numerical models were compared each other. Consequently, seismic behaviour and damage state of historical masonry Hafsa Sultan mosque was determined as more realistic in the event of a severe earthquake.

삼각형 판 요소의 변위 거동에 대한 비교 연구 (A Comparative Study on the Displacement Behaviour of Triangular Plate Elements)

  • 이병채;이용주;구본웅
    • 전산구조공학
    • /
    • 제5권2호
    • /
    • pp.105-118
    • /
    • 1992
  • Static performance was compared for the triangular plate elements through some numerical experiments. Four Kirchhoff elements and six Mindlin elements were selected for the comparison. Numerical tests were executed for the problems of rectangular plates with regular and distorted meshes, rhombic plates, circular plates and cantilever plates. Among the Kirchhoff 9 DOF elements, the discrete Kirchhoff theory element was the best. Element distortion and the aspect ratio were shown to have negligible effects on the displacement behaviour. The Specht's element resulted in better results than the Bergan's but it was sensitive to the aspect ratio. The element based on the hybrid stress method also resulted in good results but it assumed to be less reliable. Among the linear Mindlin elements, the discrete shear triangle was the best in view of reliability, accuracy and convergence. Since the thin plate behaviour of it was as good as the DKT element, it can be used effectively in the finite element code regardless of the thickness. As a quadratic Mindlin element, the MITC7 element resulted in best results in almost all cases considered. The results were at least as good as those of doubly refined meshes of linear elements.

  • PDF