• Title/Summary/Keyword: Numerical Analyses

Search Result 2,682, Processing Time 0.03 seconds

Computation of Nonlinear Elastic Strains Occurring in the Leaflet of the Edwards MIRA Mechanical Heart Valve by the Applied High Blood Pressure (혈압에 의해 Edwards MIRA 기계식인공심장판막에 발생하는 비선형 탄성변형률의 계산)

  • Kwon, Young-Joo;Yoon, Koo-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.493-504
    • /
    • 2008
  • This paper presents a computation of nonlinear elastic strains that may occur in the leaflet of the Edwards MIRA mechanical heart valve by the applied high blood pressure using the finite element analysis methodology. By adopting numerical analysis techniques of the commercial finite element analysis code, NISA, structural analyses of the Edwards MIRA mechanical heart valve are performed for the slight variation of leaflet thickness to get the elastic strains occurring in the leaflet while the high blood fluid pressures are applied to the leaflet surface in order that the maximum stress occurring in the leaflet may be less than the yield stress of the leaflet material(Si-Alloyed PyC). And so, only the geometric non-linearity is assumed because large geometric nonlinear elastic strains are expected rather than material nonlinear strains due to the applied high blood pressure. Computed linear and nonlinear elastic strains are compared to make sure the non-linearity of the computed elastic strain. The comparison result shows that large elastic strains occur clearly in the very thin leaflets as high blood pressures are applied. However, only the linear elastic strains occur for low blood pressures, and also for thick leaflets even for the high blood pressures. Hence the nonlinear structural analysis is very required in the structural design of a mechanical heart valve.

Evaluation of the Response of BRM Analysis with Spring-Damper Absorbing Boundary Condition according to Modeling Extent of FE Region for the Nonlinear SSI Analysis (비선형 SSI 해석을 위해 Spring-Damper 에너지 흡수경계조건을 적용한 BRM의 유한요소 모델링 범위에 따른 응답평가)

  • Lee, Eun-Haeng;Kim, Jae-Min;Jung, Du-Ri;Joo, Kwang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.499-512
    • /
    • 2016
  • The boundary reaction method(BRM) is a substructure time domain method, it removes global iterations between frequency and time domain analyses commonly required in the hybrid approaches, so that it operates as a two-step uncoupled method. The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. In the time domain analysis, the near-field soil is modeled to simulate the wave radiation problem. This paper evaluates the performance of the BRM according to modeling extent of near-field soil for the nonlinear SSI analysis of base-isolated NPP structure. For this purpose, parametric studies are performed using equivalent linear SSI problems. The accuracy of the BRM solution is evaluated by comparing the BRM solution with that of conventional SSI seismic technique. The numerical results show that the soil condition affects the modeling range of near-field soil for the BRM analysis as well as the size of the basemat. Finally, the BRM is applied for the nonlinear SSI analysis of a base-isolated NPP structure to demonstrate the accuracy and effectiveness of the method.

Optimal design of nonlinear damping system for seismically-excited adjacent structures using multi-objective genetic algorithm integrated with stochastic linearization method (추계학적 선형화 방법 및 다목적 유전자 알고리즘을 이용한 지진하중을 받는 인접 구조물에 대한 비선형 감쇠시스템의 최적 설계)

  • Ok, Seung-Yong;Song, Jun-Ho;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2007
  • Optimal design method of nonlinear damping system for seismic response control of adjacent structures is studied in this paper. The objective functions of the optimal design are defined by structural response and total amount of the dampers. In order to obtain a solution minimizing two mutually conflicting objective functions simultaneously, multi-objective optimization technique based on genetic algorithm is adopted. In addition, stochastic linearization method is embedded into the multi-objective framework to efficiently estimate the seismic responses of the adjacent structures interconnected by nonlinear hysteretic dampers without performing nonlinear time-history analyses. As a numerical example to demonstrate the effectiveness of the proposed technique, 20-story and 10-story buildings are considered and MR dampers of which hysteretic behaviors vary with the magnitude of the input voltage are considered as nonlinear hysteretic damper interconnecting two adjacent buildings. The proposed approach can provide the optimal number and capacities of the MR dampers, which turned out to be more economical than the uniform distribution system while maintaining similar control performance. The proposed damper system is verified to show more stable performance in terms of the pounding probability between two adjacent buildings. The applicability of the proposed method to the design problem for optimally placing semi-active control system is examined as well.

A probabilistic fragility evaluation method of a RC box tunnel subjected to earthquake loadings (지진하중을 받는 RC 박스터널의 확률론적 취약도 평가기법)

  • Huh, Jungwon;Le, Thai Son;Kang, Choonghyun;Kwak, Kiseok;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • A probabilistic fragility assessment procedure is developed in this paper to predict risks of damage arising from seismic loading to the two-cell RC box tunnel. Especially, the paper focuses on establishing a simplified methodology to derive fragility curves which are an indispensable ingredient of seismic fragility assessment. In consideration of soil-structure interaction (SSI) effect, the ground response acceleration method for buried structure (GRAMBS) is used in the proposed approach to estimate the dynamic response behavior of the structures. In addition, the damage states of tunnels are identified by conducting the pushover analyses and Latin Hypercube sampling (LHS) technique is employed to consider the uncertainties associated with design variables. To illustrate the concepts described, a numerical analysis is conducted and fragility curves are developed for a large set of artificially generated ground motions satisfying a design spectrum. The seismic fragility curves are represented by two-parameter lognormal distribution function and its two parameters, namely the median and log-standard deviation, are estimated using the maximum likelihood estimates (MLE) method.

Seed morphology of Euphorbia section Zygophyllidium and related taxa (대극속 Zygophy llidium절과 근연 분류군의 종자 형태)

  • Jin , Sun-Mi;Park, Ki-Ryong
    • Korean Journal of Plant Taxonomy
    • /
    • v.38 no.4
    • /
    • pp.389-403
    • /
    • 2008
  • Seed morphological studies of 12 species of sect. Zygophyllidium and related Poinsettia using light and scanning electron microscopy were conducted to test the hypotheses of the sectional boundaries and species relationships. Characteristics of seeds, and the keys of identification of 12 species were presented. Seeds of 12 species were divided into 6 types based on the UPGMA tree from numerical analyses using nine seed characters. Type I, including E. uniglandulosa, is characterized by the foveolate seed with granulate testa cells. Type II, including species E. exstipulata, E. lagunensis, E. bilobata, E. hexagonoides and E. chersonesa, was recognized by the presence of inter-cellular granules among testa cells. Type III, including E. cyathophora, has a seed with acute apex, and concentric circles on the surface of testa cells. Type IV, including species of E. dentata and E. pentadactyla, has a seed with caruncle and lacking inter-cellular granules among testa cells. Type V, including E. hexagona, was characterized by the ovate seeds and lacking inter-cellular granules. Type VI, including E. eriantha and E. lacera, was recognized by the seeds with rectangular shape with caruncle. Based on the seed morphology, sect. Zygophyllidium should be defined only species with E. exstipulata, E. lagunensis, E. bilobata, E. hexagonoides and E. chersonesa. E. hexagona, traditionally included in this section, was closely related to E. dentata from Poinsettia.

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF

Reliability Assessment Based on an Improved Response Surface Method (개선된 응답면기법에 의한 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • response surface method (RSM) is widely used to evaluate th e extremely smal probability of ocurence or toanalyze the reliability of very complicated structures. Althoug h Monte-Carlo Simulation (MCS) technique can evaluate any system, the procesing time of MCS dependson the reciprocal num ber of the probability of failure. The stochastic finite element method could solve thislimitation. However, it is limit ed to the specific program, in which the mean and coeficient o f random variables are programed by a perturbation or by a weigh ted integral method. Therefore, it is not aplicable when erequisite programing. In a few number of stage analyses, RSM can construct a regresion model from the response of the c omplicated structural system, thus, saving time and efort significantly. However, the acuracy of RSM depends on the dist ance of the axial points and on the linearity of the limit stat e functions. To improve the convergence in exact solution regardl es of the linearity limit of state functions, an improved adaptive response surface method is developed. The analyzed res ults have ben verified using linear and quadratic forms of response surface functions in two examples. As a result, the be st combination of the improved RSM techniques is determined and programed in a numerical code. The developed linear adapti ve weighted response surface method (LAW-RSM) shows the closest converged reliability indices, compared with quadratic form or non-adaptive or non-weighted RSMs.

Seismic Vulnerability Assessment of RC Frame Structures Using 3D Analytical Models (3차원 해석 모델을 이용한 RC 프레임 구조물의 지진 취약도 평가)

  • Moon, Do-Soo;Lee, Young-Joo;Lee, Sangmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.724-731
    • /
    • 2016
  • As the structural damage caused by earthquakes has been gradually increasing, estimating the seismic fragility of structures has become essential for earthquake preparation. Seismic fragility curves are widely used as a probabilistic indicator of structural safety against earthquakes, and many researchers have made efforts to develop them in a more accurate and effective manner. However, most of the previous research studies used simplified 2D analytical models when deriving fragility curves, mainly to reduce the numerical simulation time; however, in many cases 2D models are inadequate to accurately evaluate the seismic behavior of a structure and its seismic vulnerability. Thus, this study provides a way to derive more accurate, but still effective, seismic fragility curves by using 3D analytical models. In this method, the reliability analysis software, FERUM, is integrated with the structural analysis software, ZEUS-NL, enabling the automatic exchange of data between these two software packages, and the first order reliability method (FORM), which is not a sampling-based method, is utilized to calculate the structural failure probabilities. These tools make it possible to conduct structural reliability analyses effectively even with 3D models. By using the proposed method, this study conducted a seismic vulnerability assessment of RC frame structures with their 3D analytical models.