• 제목/요약/키워드: Number Born Alive

검색결과 65건 처리시간 0.03초

The Outcomes of Selection in a Closed Herd on a Farm in Operation

  • Do, ChangHee;Yang, ChangBeom;Choi, JaeGwan;Kim, SiDong;Yang, BoSeok;Park, SooBong;Joo, YoungGuk;Lee, SeokHyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권9호
    • /
    • pp.1244-1251
    • /
    • 2015
  • A herd of Berkshire pigs was established in 2003 and subjected to selection without introduction of any genetic resources until 2007. The complete pedigree, including 410 boars and 916 sows, as well as the records from 5,845 pigs and 822 litters were used to investigate the results obtained from the selections. The index of selection for breeding values included days to 90 kg (D90kg), backfat thickness (BF) and number of piglets born alive (NBA). The average inbreeding coefficients of pigs were found to be 0.023, 0.008, 0.013, 0.025, 0.026, and 0.005 from 2003 to 2007, respectively. The genetic gains per year were 12.1 g, -0.04 mm, -3.13 days, and 0.181 head for average daily gain (ADG), BF, D90kg, and NBA, respectively. Breeding values of ADG, BF and D90kg were not significantly correlated with inbreeding coefficients of individuals, except for NBA (-0.21). The response per additional 1% of inbreeding was 0.0278 head reduction in NBA. The annual increase of inbreeding was 0.23% and the annual decrease in NBA due to inbreeding was 0.0064 head. This magnitude could be disregarded when compared with the annual gain in NBA (0.181 head). These results suggest that inbreeding and inbreeding depression on ordinary farms can be controlled with a proper breeding scheme and that breeding programs are economical and safe relative to the risks associated with importation of pigs.

토끼에서 태아수술에 의한 횡경막탈장과 기도결찰 (Experimental Diaphragmatic Hernia and Tracheal Ligtion in a Fetal Rabbit Model)

  • 조마해;김우기
    • Advances in pediatric surgery
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 2000
  • Despite of advances in perinatal management and treatment modalities congenital diaphragmatic hernia(CDH) remains a frustrating problem. Although the sheep has proven to be a reliable experimental model for the production of intrauterine CDH, the rabbit may have some advantages. These include lower cost, smaller body size, year-round availability, high number of fetuses per pregnancy, and short gestational period. To evaluate the feasibility of the rabbit model of CDH, twenty-seven pregnant New Zealand rabbits were utilized. Hysterotomy and an operative procedure for creating a diaphragmatic defect on gestational day 24 or 25, in two fetuses of each pregnant rabbit were performed. In one fetus of one cornu of the uterus, the left fetal diaphragm was excised through an open thoracotomy(DH group). In another fetus in the other cornu, CDH was created and the trachea clipped(Surgiclip, USSC, Norwalk, Conn., USA) (TL group). Delivery was by Cesarean section on 30 days of gestation. Among twenty- seven pregnant rabbits, 12 in the DH group and eight in the TL group were born alive. The most common herniated organ was the left lobe of the liver. In thee DH group, the lungs were hypoplastic with decreased lung weight/body weight ratio, reduced numbers of alveoli, thicker media of the pulmonary arteries, and immature alveoli. In TL group, the alveoli were more mature and did not differ from the control animals. In conclusion, (1) pulmonary hypoplasia develops in the fetal rabbit diaphragmatic hernia model and (2) simultaneous tracheal ligation prevents pulmonary hypoplasia.

  • PDF

Genetic association between sow longevity and social genetic effects on growth in pigs

  • Hong, Joon Ki;Kim, Yong Min;Cho, Kyu Ho;Cho, Eun Seok;Lee, Deuk Hwan;Choi, Tae Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1077-1083
    • /
    • 2019
  • Objective: Sow longevity is important for efficient and profitable pig farming. Recently, there has been an increasing interest in social genetic effect (SGE) of pigs on stress-tolerance and behavior. The present study aimed to estimate genetic correlations among average daily gain (ADG), stayability (STAY), and number of piglets born alive at the first parity (NBA1) in Korean Yorkshire pigs, using a model including SGE. Methods: The phenotypic records of ADG and reproductive traits of 33,120 and 11,654 pigs, respectively, were evaluated. The variances and (co) variances of the studied traits were estimated by a multi-trait animal model applying the Bayesian with linear-threshold models using Gibbs sampling. Results: The direct and SGEs on ADG had a significantly negative (-0.30) and neutral (0.04) genetic relationship with STAY, respectively. In addition, the genetic correlation between the social effects on ADG and NBA1 tended to be positive (0.27), unlike the direct effects (-0.04). The genetic correlation of the total effect on ADG with that of STAY was negative (-0.23) but non-significant, owing to the social effect. Conclusion: These results suggested that total genetic effect on growth in the SGE model might reduce the negative effect on sow longevity because of the growth potential of pigs. We recommend including social effects as selection criteria in breeding programs to obtain satisfactory genetic changes in both growth and longevity.

Coping with large litters: management effects on welfare and nursing capacity of the sow

  • Peltoniemi, Olli;Han, Taehee;Yun, Jinhyeon
    • Journal of Animal Science and Technology
    • /
    • 제63권2호
    • /
    • pp.199-210
    • /
    • 2021
  • A number of management issues can be used as drivers for change in order to improve animal welfare and nursing capacity of the hyperprolific sow. Group housing of sows during gestation is a recommended practice from the perspective of animal welfare. Related health issues include reproductive health and the locomotor system. It appears that management of pregnant sows in groups is challenging for a producer and considerable skill is required. We explored the benefits and challenges of group housing, including feeding issues. Increasing litter size requires additional attention to the mammary gland and its ability to provide sufficient nursing for the growing litter. We discuss the fundamentals of mammary development and the specific challenges related to the hyperprolific sow. We also address challenges with the farrowing environment. It appears that the old-fashioned farrowing crate is not only outdated in terms of welfare from the public's perspective, but also fails to provide the environment that the sow needs to support her physiology of farrowing, nursing, and maternal behaviour. Studies from our group and others indicate that providing the sow with a loose housing system adequate in space and nesting material, along with reasonable chance for isolation, can be considered as fundamental for successful farrowing of the hyperprolific sow. It has also been shown that management strategies, such as split suckling and cross fostering, are necessary to ensure proper colostrum intake for all piglets born alive in a large litter. We thus conclude that welfare and nursing capacity of the sow can be improved by management. However, current megatrends such as the climate change may change sow management and force the industry to rethink goals of breeding and, for instance, breeding for better resilience may need to be included as goals for the future.

Effects of Organic Trace Mineral Supplementation on Sows' Reproductive and Neonates' Growth Performance through 2 wk Postweaning

  • Acda, S.P.;Chae, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권9호
    • /
    • pp.1312-1318
    • /
    • 2002
  • A feeding trial using sows and their neonates was conducted to determine the effects of source and level of organic trace mineral supplementation on reproductive performance of sows and the subsequent performance of their neonates through 2 wk post weaning. A total of 16 gestating sows ($Landrace{\times}$Yorkshire) in parities 2 to 4 were randomly assigned to 4 dietary treatments following a $2{\times}2$ factorial arrangement in a completely randomized design. One of the two factors evaluated the effect of the source (inorganic vs organic), and the second factor evaluated the effect of the level (low vs high) of trace minerals added to the diet. The trace mineral premixes were formulated to provide a low concentration of trace minerals (50 ppm Fe/87.5 ppm Fe, 17.5 ppm Cu/85 ppm Cu, 45 ppm Zn/60 ppm Zn, and 20 ppm Mn/17.5 ppm Mn), and a high concentration of trace minerals (100 ppm Fe/175 ppm Fe, 35 ppm Cu/170 ppm Cu, 90 ppm Zn/120 ppm Zn, 40 ppm Mn/35 ppm Mn), when included at 0.20% in sows'/weaned pigs' diets, respectively. The total number born, total born alive and weaned, and the average neonate weight at birth were affected neither by the dietary source nor by the level of trace minerals (p>0.05), but an interaction effect (p<0.05) between the source and level of trace minerals was observed on the average weight at weaning. The neonates from sows fed the low level of organic trace minerals gained weight at an equal rate compared with those farrowed by sows fed the high level of inorganic trace minerals. Sows fed the organic trace minerals nursed their young with milk higher in Fe and Zn (p<0.05) compared with those fed diets with inorganic trace minerals. Consequently, the weaned pigs receiving the organic form of trace minerals tended to grow at a faster rate, consumed less feed and tended to utilize their feed more efficiently (p<0.10). It was further observed that the organic trace minerals significantly increased (p<0.05) Fe contents in the liver and serum, and Zn in the serum and bone. In conclusion, sows and neonates fed the organic minerals at low level showed similar performance compared with those fed the inorganic minerals at high level as specified in this study.

Effects of dietary vitamin levels on physiological responses, blood profiles, and reproductive performance in gestating sows

  • Jeong, Jae Hark;Hong, Jin Su;Han, Tae Hee;Fang, Lin Hu;Chung, Woo Lim;Kim, Yoo Yong
    • Journal of Animal Science and Technology
    • /
    • 제61권5호
    • /
    • pp.294-303
    • /
    • 2019
  • This study was performed to evaluate the effects of dietary vitamin levels on physiological responses, blood profiles, and reproductive performance in gestating sows. A total of 52 F1 multiparous sows ($Yorkshire{\times}Landrace$) with an average body weight of $223.5{\pm}31.7kg$, an average parity of $6.4{\pm}2.7$, and an average backfat thickness of $18.5{\pm}4.9mm$ were divided into four treatment groups considering body weight, backfat thickness, and parity in a completely randomized design with 13 replicates. The treatments were 100% (V1), 300% (V3), 600% (V6) and 900% (V9) of the National Research Council (NRC) Nutrient Requirements of Swine. The gestation diet was formulated based on corn-soybean meal (SBM) and contained 3,265 kcal of metabolizable energy (ME)/kg and 12.00% crude protein. During the lactation period, all sows were fed the same commercial lactation diet. There was no significant difference in body weight of gestating sows. However backfat thickness tended to increase when higher levels of vitamins were provided to gestating sows (p < 0.10). When high levels of dietary vitamins were provided, the body weight change of lactating sows increased (p < 0.01). When sows were fed higher levels of vitamins, the feed intake of lactating sows tended to decrease (p = 0.06). There were no treatment differences in the number of total born, born alive, stillbirth piglets, or the body weight of piglets according to different dietary vitamin level. As dietary vitamin level increased, the serum concentration of $25(OH)D_3$ in sows at 90 days of gestation linearly increased (p < 0.01). Furthermore, the serum vitamin E level of gestating sows was linearly increased with increasing dietary vitamin level (p < 0.05). The current NRC vitamin requirements are sufficient for gestating sows and higher levels of vitamins in the gestation diet did not show any beneficial effects for gestating and lactating sows.

The Effect of Wet Pad and Forced Ventilation House on the Reproductive Performance of Boar

  • Chiang, S.H.;Hsia, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권1호
    • /
    • pp.96-101
    • /
    • 2005
  • There were two trials involved in the experiment. Trial 1: the trial was conducted on two Taiwan Sugar Corporation (TSC) pig farms. One was located in the north of Taiwan and the other was located in the south. Both farms had wet pad and forced ventilation (WPFV) and conventional open design (COD) boar and sow houses. There were 12 Duroc boars, age ranging from 12-24 months. Half of them (6 boars) were raised in a WPFV pig house, and the other half were kept in a COD house. Semen was collected at 5-day intervals from May $1^{st}$ to the end of October. Sixteen sows (2-8 parity) were served by artificial insemination each week from the beginning of May to the end of Oct. These sows were checked for heat from 18 days to 25 days after insemination. Trial 2: there were four MPFV boar houses involved in the test. Two houses were located in the north of Taiwan, and the other two houses were located in the south. The test was conducted from January 2000 to December 2001. The total number of serviced sows by MPFV-housed boars was 35,105 head and for COD-housed boars 103,065 head. The results showed that the total semen volume, density of sperm, total sperm per ejaculate, sperm motility and morphological abnormality were significantly better (p<0.01) for boar raised in WPFV house than for COD houses. Average sperm motility in June and July was lower than for the other months. Morphological abnormality was higher during May, June and July. Although the results did not reach a significant level, the average value showed that the total volume of boar semen was higher in the north than for the south. The total semen volume production of boar raised in WPFV was higher than for boars raised in COD house, reaching a significant level only in summer. Boars kept in WPFV house had higher total sperm number than boars kept in COD house, reaching a significant level in spring (p<0.05), summer (p<0.01), and fall (p<0.05) but not in winter (p>0.05). Boars raised in WPFV house had significantly higher sperm motility than boars in COD house during spring (p<0.001), summer (p<0.001), fall (p<0.01) and winter (p<0.05). The average farrowing rate and piglets born alive were higher for boars in WPFV house than for boars in COD house, but neither reached a significant level (p>0.05). The present experiment shows that WPFV house can improve the reproduction performance of boars.

Estimation of Genetic Parameters and Trends for Length of Productive Life and Lifetime Production Traits in a Commercial Landrace and Yorkshire Swine Population in Northern Thailand

  • Noppibool, Udomsak;Elzo, Mauricio A.;Koonawootrittriron, Skorn;Suwanasopee, Thanathip
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권9호
    • /
    • pp.1222-1228
    • /
    • 2016
  • The objective of this research was to estimate genetic parameters and trends for length of productive life (LPL), lifetime number of piglets born alive (LBA), lifetime number of piglets weaned (LPW), lifetime litter birth weight (LBW), and lifetime litter weaning weight (LWW) in a commercial swine farm in Northern Thailand. Data were gathered during a 24-year period from July 1989 to August 2013. A total of 3,109 phenotypic records from 2,271 Landrace (L) and 838 Yorkshire sows (Y) were analyzed. Variance and covariance components, heritabilities and correlations were estimated using an Average Information Restricted Maximum Likelihood (AIREML) procedure. The 5-trait animal model contained the fixed effects of first farrowing year-season, breed group, and age at first farrowing. Random effects were sow and residual. Estimates of heritabilities were medium for all five traits ($0.17{\pm}0.04$ for LPL and LBA to $0.20{\pm}0.04$ for LPW). Genetic correlations among these traits were high, positive, and favorable (p<0.05), ranging from $0.93{\pm}0.02$ (LPL-LWW) to $0.99{\pm}0.02$ (LPL-LPW). Sow genetic trends were non-significant for LPL and all lifetime production traits. Sire genetic trends were negative and significant for LPL ($-2.54{\pm}0.65d/yr$; p = 0.0007), LBA ($-0.12{\pm}0.04piglets/yr$; p = 0.0073), LPW ($-0.14{\pm}0.04piglets/yr$; p = 0.0037), LBW ($-0.13{\pm}0.06kg/yr$; p = 0.0487), and LWW ($-0.69{\pm}0.31kg/yr$; p = 0.0365). Dam genetic trends were positive, small and significant for all traits ($1.04{\pm}0.42d/yr$ for LPL, p = 0.0217; $0.16{\pm}0.03piglets/yr$ for LBA, p<0.0001; $0.12{\pm}0.03piglets/yr$ for LPW, p = 0.0002; $0.29{\pm}0.04kg/yr$ for LBW, p<0.0001 and $1.23{\pm}0.19kg/yr$ for LWW, p<0.0001). Thus, the selection program in this commercial herd managed to improve both LPL and lifetime productive traits in sires and dams. It was ineffective to improve LPL and lifetime productive traits in sows.

Estimation of Genetic Parameters and Trends for Weaning-to-first Service Interval and Litter Traits in a Commercial Landrace-Large White Swine Population in Northern Thailand

  • Chansomboon, C.;Elzo, M.A.;Suwanasopee, T.;Koonawootrittriron, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권5호
    • /
    • pp.543-555
    • /
    • 2010
  • The objectives of this research were the estimation of genetic parameters and trends for weaning-to-first service interval (WSI), and litter traits in a commercial swine population composed of Landrace (L), Large White (T), LT, and TL animals in Chiang Mai, Northern Thailand. The dataset contained 4,399 records of WSI, number of piglets born alive (NBA), litter weight of live piglets at birth (LBW), number of piglets at weaning (NPW), and litter weight at weaning (LWW). Variance and covariance components were estimated with REML using 2-trait analyses. An animal model was used for WSI and a sire-dam model for litter traits. Fixed effects were farrowing year-season, breed group of sow, breed group of boar (litter traits), parity, heterosis (litter traits), sow age, and lactation length (NPW and LWW). Random effects were boar (litter traits), sow, permanent environment, and residual. Heritabilities for direct genetic effects were low for WSI (0.04${\pm}$0.02) and litter traits (0.05${\pm}$0.02 to 0.06${\pm}$0.02). Most heritabilities for maternal litter trait effects were 20% to 50% lower than their direct counterparts. Repeatability for WSI was similar to its heritability. Repeatabilities for litter traits ranged from 0.15${\pm}$0.02 to 0.18${\pm}$F0.02. Direct genetic, permanent environment, and phenotypic correlations between WSI and litter traits were near zero. Direct genetic correlations among litter traits ranged from 0.56${\pm}$0.20 to 0.95${\pm}$0.05, except for near zero estimates between NBA and LWW, and LBW and LWW. Maternal, permanent environment, and phenotypic correlations among litter traits had similar patterns of values to direct genetic correlations. Boar genetic trends were small and significant only for NBA (-0.015${\pm}$0.005 piglets/yr, p<0.004). Sow genetic trends were small, negative, and significant (-0.036${\pm}$0.013 d/yr, p<0.01 for WSI; -0.017${\pm}$0.005 piglets/yr, p<0.007, for NBA; -0.015${\pm}$0.005 kg/yr, p<0.01, for LBW; -0.019${\pm}$0.008 piglets/yr, p<0.02, for NPW; and -0.022${\pm}$0.006 kg/yr, p<0.003, for LWW). Permanent environmental correlations were small, negative, and significant only for WSI (-0.028${\pm}$0.011 d/yr, p<0.02). Environmental trends were positive and significant only for litter traits (p<0.01 to p<0.0003). Selection based on predicted genetic values rather than phenotypes could be advantageous in this population. A single trait analysis could be used for WSI and a multiple trait analysis could be implemented for litter traits.

Effects of Fe-soy Proteinate Chelate Supplementation to Diets of Periparturient Sows and Piglets on the Fe Level in the Blood of Piglets

  • Im, Sun-Jae;Pang, Myung-Geol;Shin, Kwang-Suk;Rhee, Ah-Reum;Ebeid, T.A.;Paik, In-Kee
    • Journal of Animal Science and Technology
    • /
    • 제52권3호
    • /
    • pp.221-228
    • /
    • 2010
  • The objective of the present study was to investigate the effects of Fe-soy proteinate chelate (Fe-SP) on sows milk, piglet blood parameters and performance. A total of 15 sows of 3 wk before parturition and pigs after births to 3 wk were assigned to three dietary treatments: control (sow-basal diet, piglets with Fe injection); Fe-SP 100 (Fe 100 ppm as Fe-SP in sow and piglet diet); Fe-SP 200 (Fe 200 ppm as Fe-SP in sow and piglet diet). Each treatment had 5 replicates (sows) of six piglets per sow randomly selected from the same offspring. For this experiment, Fe-SP was manufactured. There were no significant differences among treatments in number of pigs born in total or alive per litter, birth weight, number of pigs weaned per litter and weaning weight. However, weight gain, feed intake and feed conversion ratio significantly (p<0.05) decreased as the supplementation level of Fe-SP increased. There were no significant differences among treatments in Fe content at 3 wk before parturition in sow blood. However, Fe content at 2 wk before parturition in sow blood significantly (p<0.05) increased as the supplementation of Fe-SP. While there were no significant differences among treatments in Fe content at 1 wk before parturition in sow blood, it tended to increase as the supplementation level of Fe-SP increased. There were no significant differences among treatments in Fe content of sow milk. However, it tended to increase as the supplementation level of Fe-SP increased. Iron content in the blood of piglets was significantly (p<0.05) higher in control (Fe injected) than Fe-SP 100 and Fe-SP 200 treatments at $1^{st}$ and $2^{nd}$ wk but it was significantly higher in Fe-SP 200 than others in $3^{rd}$ wk. Zinc content in the blood also significantly (p<0.05) increased as the Fe-SP supplementation level increased in $3^{rd}$ wk. In conclusion, Fe-SP supplementation significantly affected Fe content in the blood of piglets. Iron injection was more effective at $1^{st}$ and $2^{nd}$ wk, while Fe-SP 200 supplementation was effective at $3^{rd}$ wk in improving blood Fe level in piglets.