• Title/Summary/Keyword: Nucleotide Polymorphism

Search Result 952, Processing Time 0.033 seconds

In Vitro Wheat Immature Spike Culture Screening Identified Fusarium Head Blight Resistance in Wheat Spike Cultured Derived Variants and in the Progeny of Their Crosses with an Elite Cultivar

  • Huang, Chen;Gangola, Manu P.;Kutcher, H. Randy;Hucl, Pierre;Ganeshan, Seedhabadee;Chibbar, Ravindra N.
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.558-569
    • /
    • 2020
  • Fusarium head blight (FHB) is a devastating fungal disease of wheat (Triticum aestivum L.). The lack of genetic resources with stable FHB resistance combined with a reliable and rapid screening method to evaluate FHB resistance is a major limitation to the development of FHB resistant wheat germplasm. The present study utilized an immature wheat spike culture method to screen wheat spike culture derived variants (SCDV) for FHB resistance. Mycotoxin concentrations determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) correlated significantly (P < 0.01) with FHB severity and disease progression during in vitro spike culture. Selected SCDV lines assessed for FHB resistance in a Fusarium field disease nursery in Carman, Manitoba, Canada in 2016 showed significant (P < 0.01) correlation of disease severity to the in vitro spike culture screening method. Selected resistant SCDV lines were also crossed with an elite cv. CDC Hughes and the progeny of F2 and BC1F2 were screened by high resolution melt curve (HRM) analyses for the wheat UDP-glucosyl transferase gene (TaUGT-3B) single nucleotide polymorphism to identify resistant (T-allele) and susceptible (G-allele) markers. The progeny from the crosses were also screened for FHB severity using the immature spike culture method and identified resistant progeny grouped according to the HRM genotyping data. The results demonstrate a reliable approach using the immature spike culture to screen for FHB resistance in progeny of crosses in early stage of breeding programs.

Retrotransposon Microsatellite Amplified Polymorphism Strain Fingerprinting Markers Applicable to Various Mushroom Species

  • Le, Quy Vang;Won, Hyo-Kyung;Lee, Tae-Soo;Lee, Chang-Yun;Lee, Hyun-Sook;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.36 no.3
    • /
    • pp.161-166
    • /
    • 2008
  • The retrotransposon marY1 is a gypsy family retroelement, which is detected ubiquitously within the fungal taxonomic groups in which mushrooms are included. To utilize marY1 as a molecular marker for the DNA fingerprinting of mushrooms, oligonucleotides marY1-LTR-L and marY1-LTR-R were designed on the basis of highly conserved regions from the multiple sequence alignment of 30 marY1 sequences retrieved from a nucleotide sequence database. In accordance with $\underline{Re}trotransposon$ $\underline{M}icrosatellite$ $\underline{A}mplified$ $\underline{P}olymorphism$ (REMAP) fingerprinting methodology, the two oligonucleotides were utilized together with the short sequence repeat primers UBC807 and UBC818 for polymerase chain reaction using templates from different mushroom genomic DNAs. Among the tested oligonucleotides, the marY1-LTR-L and UBC807 primer set yielded the greatest amount of abundance and variation in terms of DNA band numbers and patterns. This method was successfully applied to 10 mushroom species, and the primer set successfully discriminated between different commercial mushroom cultivars of the same strains of 14 Pleurotus ostreatus and 16 P. eryngii. REMAP reproducibility was superior to other popular DNA fingerprinting methodologies including the random amplified polymorphic DNA method.

Development of Functional Markers for Detection of Inactive DFR-A Alleles Responsible for Failure of Anthocyanin Production in Onions (Allium cepa L.)

  • Park, Jaehyuk;Cho, Dong Youn;Moon, Jin Seong;Yoon, Moo-Kyoung;Kim, Sunggil
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.72-79
    • /
    • 2013
  • Inactivation of the gene coding for dihydroflavonol 4-reductase (DFR) is responsible for the color difference between red and yellow onions (Allium cepa L.). Two inactive DFR-A alleles, DFR-$A^{PS}$ and DFR-$A^{DEL}$, were identified in our previous study. A functional marker was developed on the basis of the premature stop codon that inactivated the DFR-$A^{PS}$ allele. A derived cleaved amplified polymorphic sequences (dCAPS) primer was designed to detect the single nucleotide polymorphism, an A/T transition, which produced the premature stop codon. Digested PCR products clearly distinguished the homozygous and heterozygous red $F_2$ individuals. Meanwhile, to develop a molecular marker for detection of the DFR-$A^{DEL}$ allele in which entire DFR-A gene was deleted, genome walking was performed and approximately 3 kb 5' and 3' flanking sequences of the DFR-$A^R$ coding region were obtained. PCR amplification using multiple primers binding to the extended flanking regions showed that more of the extended region of the DFR-A gene was deleted in the DFR-$A^{DEL}$ allele. A dominant simple PCR marker was developed to identify the DFR-$A^{DEL}$ allele using the dissimilar 3' flanking sequences of the DFR-A gene and homologous DFR-B pseudogene. Distribution of the DFR-$A^{PS}$ and DFR-$A^{DEL}$ alleles in yellow onion cultivars bred in Korea and Japan was surveyed using molecular makers developed in this study. Results showed predominant existence of the DFR-$A^{PS}$ allele in yellow onion cultivars.

Solving the Haplotype Assembly Problem for Human Using the Improved Branch and Bound Algorithm (개선된 분기한정 알고리즘을 이용한 인간 유전체의 일배체형 조합문제 해결)

  • Choi, Mun-Ho;Kang, Seung-Ho;Lim, Hyeong-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.697-704
    • /
    • 2013
  • The identification of haplotypes, which encode SNPs in a single chromosome, makes it possible to perform haplotype-based association tests with diseases. Minimum Error Correction model, one of models to computationally assemble a pair of haplotypes for a given organism from Single Nucleotide Polymorphism fragments, has been known to be NP-hard even for gapless cases. In the previous work, an improved branch and bound algorithm was suggested and showed that it is more efficient than naive branch and bound algorithm by performing experiments for Apis mellifera (honeybee) data set. In this paper, to show the extensibility of the algorithm to other organisms we apply the improved branch and bound algorithm to the human data set and confirm the efficiency of the algorithm.

Impact of GNB3, ADRB3, UCP2, and PPAR${\gamma}$-Pro12Ala polymorphisms on Boiogito response in obese subjects : A randomized, double-blind, placebo-controlled trial (방기황기탕의 유전자 다형성에 따른 비만 치료 효과 : 무작위 배정, 이중 맹검, 위약-대조군 임상시험)

  • Park, Jung-Hyun;Bose, Shambhunath;Lim, Chi-Yeon;Kim, Ho-Jun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.12 no.2
    • /
    • pp.28-43
    • /
    • 2012
  • Objectives: The aim of the study was to investigate the efficacy of Boiogito for obesity. We examined the efficacy of Boiogito for obese patients and we expected the reaction of Boiogito would vary according to the single nucleotide polymorphism(SNPs). Methods: 111 subjects(body mass index${\geq}25m/kg^2$) were recruited and randomized to receive Boiogito(n=55) or Placebo(n=56) for 8weeks. Anthropometric factors, serum lipid profile, glucose, blood pressure(BP), pulse rate, resting metabolic rate and Korean version of obesity-related quality of life(KOQOL) scale measured at baseline and 8weeks. SNPs(${\beta}3$-adrenergic receptor(ADRB3), G protein ${\beta}3$(GNB3), peroxisome proliferator activated receptor gamma 2 gene(PPAR-${\gamma}2$), uncoupling protein(UCP2)) were conducted at baseline. Adverse reactions and safety outcome variables were also checked during trials. Results: Both groups showed significant improvement on obesity after treatment. Boiogito group decreased triglyceride than did control group and improved KOQOL. Boiogito showed a significant higher efficacy in C/T and T/T genotype of GNB3 gene / in Trp64 and Arg64 genotype of ADRB3 gene / in D/D genotype of UCP2 gene / in Pro/Pro genotype of PPAR-${\gamma}$ gene. Conclusions: Boiogito promoted obesity indexes without severe adverse reactions and proved its safety. Pharmacogenetical studies of Boiogito on obesity could be a effective method for the individualized treatment and prevention of obesity.

Genetic relationship between purebred and synthetic pigs for growth performance using single step method

  • Hong, Joon Ki;Cho, Kyu Ho;Kim, Young Sin;Chung, Hak Jae;Baek, Sun Young;Cho, Eun Seok;Sa, Soo Jin
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.967-974
    • /
    • 2021
  • Objective: The objective of this study was to estimate the genetic correlation (rpc) of growth performance between purebred (Duroc and Korean native) and synthetic (WooriHeukDon) pigs using a single-step method. Methods: Phenotypes of 15,902 pigs with genotyped data from 1,792 pigs from a nucleus farm were used for this study. We estimated the rpc of several performance traits between WooriHeukDon and purebred pigs: day of target weight (DAY), backfat thickness (BF), feed conversion rate (FCR), and residual feed intake (RFI). The variances and covariances of the studied traits were estimated by an animal multi-trait model that applied the Bayesian inference. Results: rpc within traits was lower than 0.1 for DAY and BF, but high for FCR and RFI; in particular, rpc for RFI between Duroc and WooriHeukDon pigs was nearly 1. Comparison between different traits revealed that RFI in Duroc pigs was associated with different traits in WooriHeukDon pigs. However, the most of rpc between different traits were estimated with low or with high standard deviation. Conclusion: The results indicated that there were substantial differences in rpc of traits in the synthetic WooriHeukDon pigs, which could be caused by these pigs having a more complex origin than other crossbred pigs. RFI was strongly correlated between Duroc and WooriHeukDon pigs, and these breeds might have similar single nucleotide polymorphism effects that control RFI. RFI is more essential for metabolism than other growth traits and these metabolic characteristics in purebred pigs, such as nutrient utilization, could significantly affect those in synthetic pigs. The findings of this study can be used to elucidate the genetic architecture of crossbred pigs and help develop new breeds with target traits.

Preliminary research for molecular markers of two invasive toxic weeds, Cenchrus L. (Poaceae) species, based on NGS technique

  • Hyun, JongYoung;Jung, Joonhyung;Do, Hoang Dang Khoa;Kim, Joo-Hwan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.71-71
    • /
    • 2019
  • The genus Cenchrus (Poaceae), containing ca. 23 species, is distributed throughout Australia, Africa, Indian sub-continent, and America. In Korea, Cenchrus longispinus (Hack.) Fernald, especially introduced to Daecheong Island in 1999, is one of the most hazardous invasive plant which causes serious environmental threats, biodiversity damages and physically negative impact on humans and animals. Based on the next-generation sequencing (NGS) technology, we characterized the chloroplast (cp) genome sequences of C. longispinus which contains a large single copy (LSC; 80,223 bp), a small single copy (SSC; 12,449 bp), separated by a pair of inverted repeats (IRs; 22,236 bp). Additionally, we analyzed the cp genome sequences of Cenchrus echinatus L. which contains a large single copy (LSC; 80,220 bp), a small single copy (SSC; 12,439 bp), separated by a pair of inverted repeats (IRs; 22,236 bp). These cp genomes consist of 75 unique genes, 4 rRNA coding genes, 33 tRNA coding genes and 21 duplicated in the IR regions, of which the gene content and organization are similar to the other Poaceae cp genomes. We selected 40 potential regions in cp genomes of two Cenchrus species and one Korean Pennisetum species to develop new single nucleotide polymorphism (SNP) markers for identifying C. longispinus based on amplification-refractory mutation system (ARMS) technique. The markers, inferred from SNP in matK and ndhF genes, show effectiveness to recognize C. longispinus from C. echinatus and Korean native species Pennisetum alopecuroides (L.) Spreng.

  • PDF

NGSOne: Cloud-based NGS data analysis tool (NGSOne: 클라우드 기반의 유전체(NGS) 데이터 분석 툴)

  • Kwon, Chang-hyuk;Kim, Jason;Jang, Jeong-hwa;Ahn, Jae-gyoon
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.87-95
    • /
    • 2018
  • With the decrease of sequencing price, many national projects that analyzes 0.1 to 1 million people are now in progress. However, large portion of budget of these large projects is dedicated for construction of the cluster system or purchase servers, due to the lack of programs or systems that can handle large amounts of data simultaneously. In this study, we developed NGSOne, a client program that is easy-to-use for even biologists, and performs SNP analysis using hundreds or more of Whole Genome and Whole Exome analysis without construction of their own server or cluster environment. DRAGEN, BWA / GATK, and Isaac / Strelka2, which are representative SNP analysis tools, were selected and DRAGEN showed the best performance in terms of execution time and number of errors. Also, NGSOne can be extended for various analysis tools as well as SNP analysis tools.

Genomics Approach to Identify the Cause of the Missing Omega-5 Gliadin Protein in O-Free Wheat

  • Lee, Yun Gyeong;Choi, Sang Chul;Kang, Yuna;Kang, Chon-Sik;Kim, Changsoo
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.413-425
    • /
    • 2018
  • A previous work developed and identified a new omega-5 gliadin deficient wheat line named O-free by crossing Keumkang and Olgeuru, which is nutritionally quite meaningful in that omega-5 gliadin is one of the known wheat allergens. To verify the characteristics of the O-free, we performed RNA sequencing (RNAseq) analysis of the O-free and the two parent lines (Keumkang and Olgeuru). The results of the similarity analysis with the ESTs for gliadins and glutenins showed that the O-free ESTs had no similarity with the omega-5 gliadin sequences but had similarity to other gliadins and glutenins. Furthermore, mapping results between the raw RNAseq data from the O-free and the omega-5 gliadin sequence showed a clear deletion of the N-terminal sequences which are an important signature of omega-5 gliadin. We also designed specific PCR primers that could identify omega-5 gliadin in the genomic DNA. The results showed that no omega-5 gliadin fragments were detected in the O-free. According to these results, we confirmed that the deficiency of omega-5 gliadin in the O-free is not caused by post-transcriptional or post-translational regulations such as epigenetic phenomena but by a simple deletion in the chromosome. Furthermore, we showed that the low-molecular weight glutenin subunit (LMW-GS) gene in the O-free had a single nucleotide polymorphism (SNP) causing a premature stop codon, resulting in a truncated polypeptide. We expect that the O-free line may serve as an excellent source of wheat that could prevail in the hypo-allergen wheat market, which has recently gained interest world-wide.

Genome-wide association study identifies positional candidate genes affecting back fat thickness trait in pigs

  • Lee, Jae-Bong;Kang, Ho-Chan;Kim, Eun-Ho;Kim, Yoon-Joo;Yoo, Chae-Kyoung;Choi, Tae-Jeong;Lim, Hyun-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.707-713
    • /
    • 2018
  • This study was done to search for positional candidate genes associated with the back fat thickness trait using a Genome-Wide Association Study (GWAS) in purebred Yorkshires (N = 1755). Genotype and phenotype analyses were done for 1,642 samples. As a result of the associations with back fat thickness using the Gemma program (ver. 0.93), when the genome-wide suggestive threshold was determined using the Bonferroni method ($p=1.61{\times}10^{-5}$), the single nucleotide polymorphism (SNP) markers with suggestive significance were identified in 1 SNP marker on chromosome 2 (MARC0053928; $p=3.65{\times}10^{-6}$), 2 SNP markers on chromosome 14 (ALGA0083078; $p=7.85{\times}10^{-6}$, INRA0048453; $p=1.27{\times}10^{-5}$), and 1 SNP marker on chromosome 18 (ALGA0120564; $p=1.44{\times}10^{-5}$). We could select positional candidate genes (KCNQ1, DOCK1, LOC106506151, and LOC110257583), located close to the SNP markers. Among these, we identified a potassium voltage-gated channel subfamily Q member gene (KCNQ1) and the dedicator of cytokinesis 1 (DOCK1) gene associated with obesity and Type-2 diabetes. The SNPs and haplotypes of the KCNQ1 and DOCK1 genes can contribute to understanding the genetic structure of back fat thickness. Additionally, it may provide basic data regarding marker assisted selection for a meat quality trait in pigs.