DOI QR코드

DOI QR Code

Retrotransposon Microsatellite Amplified Polymorphism Strain Fingerprinting Markers Applicable to Various Mushroom Species

  • Le, Quy Vang (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Won, Hyo-Kyung (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Lee, Tae-Soo (Department of Biology, University of Incheon) ;
  • Lee, Chang-Yun (Greenpeace Mushroom Co.) ;
  • Lee, Hyun-Sook (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Ro, Hyeon-Su (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University)
  • Published : 2008.09.30

Abstract

The retrotransposon marY1 is a gypsy family retroelement, which is detected ubiquitously within the fungal taxonomic groups in which mushrooms are included. To utilize marY1 as a molecular marker for the DNA fingerprinting of mushrooms, oligonucleotides marY1-LTR-L and marY1-LTR-R were designed on the basis of highly conserved regions from the multiple sequence alignment of 30 marY1 sequences retrieved from a nucleotide sequence database. In accordance with $\underline{Re}trotransposon$ $\underline{M}icrosatellite$ $\underline{A}mplified$ $\underline{P}olymorphism$ (REMAP) fingerprinting methodology, the two oligonucleotides were utilized together with the short sequence repeat primers UBC807 and UBC818 for polymerase chain reaction using templates from different mushroom genomic DNAs. Among the tested oligonucleotides, the marY1-LTR-L and UBC807 primer set yielded the greatest amount of abundance and variation in terms of DNA band numbers and patterns. This method was successfully applied to 10 mushroom species, and the primer set successfully discriminated between different commercial mushroom cultivars of the same strains of 14 Pleurotus ostreatus and 16 P. eryngii. REMAP reproducibility was superior to other popular DNA fingerprinting methodologies including the random amplified polymorphic DNA method.

Keywords

References

  1. Branco, C. J., Vieira, E. A., Malone, G., Kopp, M. M., Malone, E., Bernardes, A., Mistura, C. C., Carvalho, F. I. and Oliveira, C. A. 2007. IRAP and REMAP assessments of genetic similarity in rice. J. Appl. Genet. 48:107-113 https://doi.org/10.1007/BF03194667
  2. Garnica, S., Weiss, M., Oertel, B. and Oberwinkler, F. 2003. Phylogenetic relationships of European Phlegmacium species (Cortinarius, Agaricales). Mycologia 95:1155-1170 https://doi.org/10.2307/3761917
  3. Gonzalez, P. and Labarere, J. 2000. Phylogenetic relationships of Pleurotus species according to the sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6 and V9 domains. Microbiology 146:209-221 https://doi.org/10.1099/00221287-146-1-209
  4. Han, Q., Inglis, G. D. and Hausner, G. 2002. Phylogenetic relationships among strains of the entomopathogenic fungus, Nomuraea rileyi, as revealed by partial $\beta$-tubulin sequences and inter-simple sequence repeat (ISSR) analysis. Lett. Appl. Microbiol. 34:376-383 https://doi.org/10.1046/j.1472-765X.2002.01103.x
  5. Jones, C. J., Edwards, K. J., Castaglione, S., Winfield, M. O., Sala, F., van de Wiel, C., Bredemeijer, G., Vosman, B., Matthes, M., Daly, A., Brettschneider, R., Bettini, P., Buiatti, M., Maestri, E., Malcevschi, A., Marmiroli, N., Aert, R., Volckaert, G., Rueda, J., Linacero, R., Vazquez, A. and Karp, A. 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breeding. 3:381-390 https://doi.org/10.1023/A:1009612517139
  6. Kalendar, R., Grob, T., Regina, M., Suoniemi, A. and Schulman, A. 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. TAG Theor. Appl. Genet. 98:704-711 https://doi.org/10.1007/s001220051124
  7. Kalendar, R. and Schulman, A.H. 2006. IRAP and REMAP for retrotransposon-based fingerprinting and fingerprinting. Nature Protoc. 1:2478-2484 https://doi.org/10.1038/nprot.2006.377
  8. Lopandic, K., Molnar, O. and Prillinger, H. 2005. Application of ITS sequence analysis, RAPD and AFLP fingerprinting in characterising the yeast genus Fellomyces. Microbiol. Res. 160:13-26 https://doi.org/10.1016/j.micres.2004.09.005
  9. Murata, H. and Babasaki, K. 2005. Intra- and inter-specific variations in the copy number of two types of retrotransposons from the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycorrhiza 15:381-386 https://doi.org/10.1007/s00572-005-0369-y
  10. Murata, H., Babasaki, K. and Yamada, A. 2005. Highly polymorphic DNA markers to specify strains of the ectomycorrhizal basidiomycete Tricholoma matsutake based on sigmamarY1, the long terminal repeat of gypsy-type retroelement marY1. Mycorrhiza 15:179-186 https://doi.org/10.1007/s00572-004-0319-0
  11. Murata, H. and Miyazaki, Y. 2001. Expression of marY1, a gypsy-type LTR-retroelement from the ectomycorrhizal homobasidiomycete Tricholoma matsutake, in the budding yeast Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 65:993-995 https://doi.org/10.1271/bbb.65.993
  12. Murata, H., Miyazaki, Y. and Babasaki, K. 2001. The long terminal repeat (LTR) sequence of marY1, a retroelement from the ectomycorrhizal homobasidiomycete Tricholoma matsutake, is highly conserved in various higher fungi. Biosci. Biotechnol. Biochem. 65:2297-2300 https://doi.org/10.1271/bbb.65.2297
  13. Murata, H. and Yamada, A. 2000. marY1, a member of the gypsy group of long terminal repeat retroelements from the ectomycorrhizal basidiomycete Tricholoma matsutake. Appl. Environ. Microbiol. 66:3642-3645 https://doi.org/10.1128/AEM.66.8.3642-3645.2000
  14. Peintner, U., Moncalvo, J.-M. and Vilgalys, R. 2004. Toward a better understanding of the infrageneric relationships in Cortinarius (Agaricales, Basidiomycota). Mycologia 96:1042-1058 https://doi.org/10.2307/3762088
  15. Ro, H. S., Kim, S. S., Ryu, J., S., Jeon, C. O., Lee, T. S. and Lee, H. S. 2007. Comparative studies on the diversity of the edible mushroom Pleurotus eryngii: ITS sequence analysis, RAPD fingerprinting, and physiological characteristics. Mycol. Res. 111:710-715 https://doi.org/10.1016/j.mycres.2007.03.016
  16. Skroch, P. and Nienhuis, J. 1995. Impact of scoring error and reproducibility RAPD data on RAPD based estimates of genetic distance. TAG Theor. Appl. Genet. 91:1086-1091
  17. Zervakis, G. I., Venturella, G. and Papadopoulou, K. 2001. Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Microbiology 147:3183-3194 https://doi.org/10.1099/00221287-147-11-3183
  18. Zhang, J., Huang, C., Ng, T. and Wang, H. 2006. Genetic polymorphism of ferula mushroom growing on Ferula sinkiangensis. Appl. Microbiol. Biotechnol. 71:304-309 https://doi.org/10.1007/s00253-005-0139-y

Cited by

  1. Terminal repeat retrotransposons as DNA markers in fungi pp.0233111X, 2013, https://doi.org/10.1002/jobm.201200453
  2. and the Development of Specific DNA Markers to Identify the Variant Strain vol.42, pp.1, 2014, https://doi.org/10.5941/MYCO.2014.42.1.46
  3. Screening and Characterization of LTR Retrotransposons in the genomic DNA of Pleurotus eryngii vol.42, pp.1, 2014, https://doi.org/10.4489/KJM.2014.42.1.50
  4. vol.42, pp.2, 2014, https://doi.org/10.5941/MYCO.2014.42.2.167
  5. Biology, dynamics, and applications of transposable elements in basidiomycete fungi vol.101, pp.4, 2017, https://doi.org/10.1007/s00253-017-8097-8
  6. Species clarification of oyster mushrooms in China and their DNA barcoding vol.16, pp.3, 2017, https://doi.org/10.1007/s11557-016-1266-9