• Title/Summary/Keyword: Nucleophilic Substitution Reaction

Search Result 192, Processing Time 0.02 seconds

Kinetics and Mechanism of the Aminolysis of O-Methyl S-Aryl Thiocarbonates in Acetonitrile

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1539-1542
    • /
    • 2011
  • The aminolysis of O-methyl S-aryl thiocarbonates with benzylamines are studied in acetonitrile at -45.0$^{\circ}C$. The ${\beta}_X$(${\beta}_{nuc}$) values are in the range 0.62-0.80 with a negative cross-interaction constant, ${\rho}_{XZ}$ = -0.42, which are interpreted to indicate a concerted mechanism. The kinetic isotope effects involving deuterated benzylamine nucleophiles ($XC_6H_4CH_2ND_2$) are large, $k_H/k_D$ = 1.29-1.75, suggesting that the N-H(D) bond is partially broken in the transition state by forming a hydrogen-bonded four-center cyclic structure. The concerted mechanism is enforced by the strong push provided by the MeO group which enhances the nucleofugalities of both benzylamine and arenethiolate from the putative zwitterionic tetrahedral intermediate.

Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile

  • Ul Hoque, Md. Ehtesham;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3880-3886
    • /
    • 2011
  • The nucleophilic substitution reactions of diisopropyl thiophophinic chloride (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $65.0^{\circ}C$. The anilinolysis rate of 3 is rather slow to be rationalized by the conventional stereoelectronic effects. The obtained deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are secondary inverse ($k_H/k_D$ = 0.80-0.96). The anilinolyses of ten P=S systems in MeCN are reviewed on the basis of DKIEs and selectivity parameters to obtain systematic information on the DKIEs and mechanism for thiophosphoryl transfer reactions. The steric effects of the two ligands on reactivity, DKIEs, mechanism, and substituent effects of the nucleophile (X) on the DKIEs are discussed.

Kinetics and Mechanism of the Anilinolysis of O-Ethyl Phenyl Phosphonochloridothioate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2707-2710
    • /
    • 2012
  • The nucleophilic substitution reactions of O-ethyl phenyl phosphonochloridothioate with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are kinetically investigated in acetonitrile at $55.0^{\circ}C$. The deuterium kinetic isotope effects (DKIEs) invariably increase from a secondary inverse DKIE ($k_H/k_D$ = 0.93) to a primary normal DKIE ($k_H/k_D$ = 1.28) as the substituent of nucleophile (X) changes from electron-donating to electron-withdrawing. These can be rationalized by the gradual transition state (TS) variation from a backside to frontside attack. A concerted $S_N2$ mechanism is proposed. A trigonal bipyramidal TS is proposed for a backside attack while a hydrogen-bonded, four-center-type TS is proposed for a frontside attack.

Adsorption Mechanisms of NH3 on Chlorinated Si(100)-2×1 Surface

  • Lee, Hee-Soon;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.775-778
    • /
    • 2012
  • The potential energy surfaces of ammonia molecule adsorptions on the symmetrically chlorinated Si(100)-$2{\times}1$ surface were explored with SIMOMM:MP2/6-31G(d). It was found that the initial nucleophilic attack by ammonia nitrogen to the surface Si forms a $S_N2$ type transition state, which eventually leads to an HCl molecular desorption. The second ammonia molecule adsorption requires much less reaction barrier, which can be rationalized by the surface cooperative effect. In general, it was shown that the surface Si-Cl bonds can be easily subjected to the substitution reactions by ammonia molecules yielding symmetric surface Si-$NH_2$ bonds, which can be a good initial template for subsequent surface chemical modifications. The ammonia adsorptions are in general more facile than the corresponding water adsorption, since ammonia is better nucleophile.

Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Chlorothiophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3203-3207
    • /
    • 2012
  • The nucleophilic substitution reactions of diisopropyl chlorothiophosphate (5) with X-pyridines have been kinetically studied in MeCN at $35.0^{\circ}C$. The Hammett and Br$\ddot{o}$nsted plots for the substituent X variations in the nucleophiles show biphasic concave upwards with a break point at X = 3-Ph. The pyridinolysis rate of 5 exhibits great negative deviation from the Taft plot. A concerted $S_N2$ mechanism is proposed involving a change of the attacking direction of the X-pyridines from a frontside attack with the strongly basic pyridines to a backside attack with the weakly basic pyridines.

Kinetics and Mechanism of Anilinolyses of Aryl Methyl and Aryl Propyl Chlorothiophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2797-2802
    • /
    • 2014
  • Nucleophilic substitution reactions of Y-aryl methyl (8) and Y-aryl propyl (10) chlorothiophosphates with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. A concerted mechanism is proposed for 8 based on the negative ${\rho}_{XY}$ (= -0.23) value, while a stepwise mechanism with a rate-limiting leaving group departure from the intermediate is proposed for 10 based on the positive ${\rho}_{XY}$ (= +0.68) value. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are 0.89-1.28 and 0.62-1.20 with 8 and 10, respectively. Primary normal and secondary inverse DKIEs are rationalized by a frontside attack involving hydrogen bonded, four-center-type transition state and backside attack involving in-line-type transition state, respectively.

Kinetics and Mechanism of the Anilinolysis of Aryl Ethyl Isothiocyanophosphates in Acetonitrile

  • Barai, Hasi Rani;Adhikary, Keshab Kumar;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1829-1834
    • /
    • 2013
  • The nucleophilic substitution reactions of Y-aryl ethyl isothiocyanophosphates with substituted X-anilines and deuterated X-anilines were investigated kinetically in acetonitrile at $75.0^{\circ}C$. The free energy relationships with X in the nucleophiles exhibited biphasic concave downwards with a break point at X = H. A stepwise mechanism with rate-limiting bond formation for strongly basic anilines and with rate-limiting bond breaking for weakly basic anilines is proposed based on the negative and positive ${\rho}_{XY}$ values, respectively. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) changed gradually from primary normal with strongly basic anilines, via primary normal and secondary inverse with aniline, to secondary inverse with weakly basic anilines. The primary normal and secondary inverse DKIEs were rationalized by frontside attack involving hydrogen bonded, four-center-type TSf and backside attack involving in-line-type TSb, respectively.

Nucleophilic Substitution at a Carbonyl Carbon Atom (IV). EHT Calculations on Phenyl Chloroformate (카르보닐 탄소원자의 친핵치환 반응 (제4보). Phenyl Chloroformate에 대한 EHT 계산)

  • Lee Ikchoon;Kim, Ui Rak;Lee Myung Jae;Seo, Bae Seok
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.175-179
    • /
    • 1974
  • EHT calculation have been carried out on phenyl chloro-thiol, phenyl chloro-thiono and phenyl dithioformates to explain the conformations and reactivity of the compounds. Results of calculation lead us to conclude that the mechanism of SN reaction of these compounds are likely to be the $S_N2$ type and trans form is more stable than cis form for all molecules.

  • PDF

Dual Substituent Effects on Pyridinolysis of Bis(aryl) Chlorothiophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1754-1758
    • /
    • 2014
  • The nucleophilic substitution reactions of bis(Y-aryl) chlorothiophosphates (1) with X-pyridines are investigated kinetically in acetonitrile at $35.0^{\circ}C$. The free energy relationships with both X and Y are biphasic concave upwards with a break point at X = 3-Ph and Y = H, respectively. The sign of cross-interaction constants (CICs; ${\rho}_{XY}$) is positive with all X and Y. Proposed mechanism is a stepwise process with a rate-limiting leaving group departure from the intermediate with all X and Y. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorothiophosphates (2). In the case of Y = electron-withdrawing groups, the cross-interaction between Y and Y, due to additional substituent Y, is significant enough to change the sign of ${\rho}_{XY}$ from negative with 2 to positive with 1, indicative of the change of mechanism from a rate-limiting bond formation to bond breaking.

Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4179-4184
    • /
    • 2011
  • The nucleophilic substitution reactions of bis(2,6-dimethylphenyl) chlorophosphate (5), containing the four ortho-methyl substituents, with X-pyridines are investigated kinetically in MeCN at $65.0^{\circ}C$. The free energy correlations for substituent X variations in the nucleophiles exhibit biphasic concave upwards with a breakpoint at a X = 3-Cl. Unusual positive ${\rho}_X$ (= +5.40) and negative ${\beta}_X$ (= -0.83) values are obtained with the weakly basic pyridines. The pyridinolysis rate of 5 is hundreds times slower compared to that of bis(phenyl) chlorophosphate because of the steric hindrance of the four ortho-methyl substituents in the two phenyl rings. Ion-pair mechanism is proposed and positive ${\rho}_X$ and negative ${\beta}_X$ values are substantiated by an imbalance of the transition state.