DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Aminolysis of O-Methyl S-Aryl Thiocarbonates in Acetonitrile

  • Oh, Hyuck-Keun (Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University)
  • Received : 2011.02.26
  • Accepted : 2011.03.16
  • Published : 2011.05.20

Abstract

The aminolysis of O-methyl S-aryl thiocarbonates with benzylamines are studied in acetonitrile at -45.0$^{\circ}C$. The ${\beta}_X$(${\beta}_{nuc}$) values are in the range 0.62-0.80 with a negative cross-interaction constant, ${\rho}_{XZ}$ = -0.42, which are interpreted to indicate a concerted mechanism. The kinetic isotope effects involving deuterated benzylamine nucleophiles ($XC_6H_4CH_2ND_2$) are large, $k_H/k_D$ = 1.29-1.75, suggesting that the N-H(D) bond is partially broken in the transition state by forming a hydrogen-bonded four-center cyclic structure. The concerted mechanism is enforced by the strong push provided by the MeO group which enhances the nucleofugalities of both benzylamine and arenethiolate from the putative zwitterionic tetrahedral intermediate.

Keywords

References

  1. Jencks, W. P. Chem. Rev. 1985, 85, 511. https://doi.org/10.1021/cr00070a001
  2. Gresser, M.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963. https://doi.org/10.1021/ja00463a032
  3. Castro, E. A.; Ureta, C. J. Org. Chem. 1989, 54, 2153; 1990, 55, 1676.
  4. Koh, H. J.; Han, K. L.; Lee I. J. Org. Chem. 1999, 64, 4783. https://doi.org/10.1021/jo990115p
  5. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874. https://doi.org/10.1021/jo025637a
  6. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679. https://doi.org/10.1021/jo047742l
  7. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Phys. Org. Chem. 2009, 22, 1003. https://doi.org/10.1002/poc.1553
  8. Castro, E. A.; Munoz, P.; Santos J. G. J. Org. Chem. 1999, 64, 8298. https://doi.org/10.1021/jo991036g
  9. Castro E. A., Ibanez F., Salas, M.; Santos, J. G. J. Org. Chem. 1991, 56, 4819. https://doi.org/10.1021/jo00016a002
  10. Castro, E. A.; Salas, M.; Santos, J. G. J. Org. Chem. 1994, 59, 30. https://doi.org/10.1021/jo00080a008
  11. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  12. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  13. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  14. Koh, H. J.; Lee, J.-W.; Lee, H. W.; Lee, I. Can. J. Chem. 1998, 76, 710. https://doi.org/10.1139/v98-038
  15. Oh, H. K.; Lee, Y. H.; Lee. I. Int. J. Chem. Kinet. 2000, 32, 131. https://doi.org/10.1002/(SICI)1097-4601(2000)32:3<131::AID-KIN2>3.0.CO;2-C
  16. Oh, H. K.; Lee J-Y.; Park, Y. S.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 419. https://doi.org/10.1002/(SICI)1097-4601(1998)30:6<419::AID-KIN4>3.0.CO;2-V
  17. Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999, 64, 4783. https://doi.org/10.1021/jo990115p
  18. Castro, E. A.; Pizarro, M. I.; Santos, J. G. J. Org. Chem. 1996, 61, 5981.
  19. Oh, H. K.; Lee, J. Y.; Yun, J. H.; Park, Y. S.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 419. https://doi.org/10.1002/(SICI)1097-4601(1998)30:6<419::AID-KIN4>3.0.CO;2-V
  20. Lee, I.; Lee, B. S.; Koh, H. J.; Chang, B. D. Bull. Korean Chem. Soc. 1995, 16, 277.
  21. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  22. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  23. Isaacs, N. S. Physical Organic Chemistry, 2nd ed.; Longman: Harlow, 1995; Chapter 10.
  24. Al-Awadi, N.; Taylor, R. J. Chem. Soc. Perkin Trans 2 1986, 1581.
  25. Guggenheim, E. A. Philos, Mag. 1926, 2, 538. https://doi.org/10.1080/14786442608564083
  26. Oh, H. K.; Hong, S. K. Bull. Korean Chem. Soc. 2009, 30, 2453. https://doi.org/10.5012/bkcs.2009.30.10.2453
  27. Jeong, K. S.; Oh, H. K. Bull. Korean Chem. Soc. 2008, 29, 1621. https://doi.org/10.5012/bkcs.2008.29.8.1621
  28. Oh, H. K. Bull. Korean Chem. Soc. 2010, 31, 1785. https://doi.org/10.5012/bkcs.2010.31.6.1785

Cited by

  1. Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.519
  2. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1547
  3. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate: Effect of Nonleaving Group on Reactivity and Reaction Mechanism vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1551
  4. Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Nonleaving Groups on Reactivity and Reaction Mechanism vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1115
  5. A Kinetic Study on Ethylaminolysis of Phenyl Y-Substituted-Phenyl Carbonates: Effect of Leaving-Group Substituents on Reactivity and Reaction Mechanism vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1722
  6. Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Me vol.33, pp.7, 2011, https://doi.org/10.5012/bkcs.2012.33.7.2269
  7. Aminolysis of Benzyl 4-Pyridyl Carbonate in Acetonitrile: Effect of Modification of Leaving Group from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism vol.33, pp.8, 2011, https://doi.org/10.5012/bkcs.2012.33.8.2719
  8. A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism vol.33, pp.9, 2011, https://doi.org/10.5012/bkcs.2012.33.9.2971
  9. Kinetic Study on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted-2-Methylbenzoates with Cyclic Secondary Amines in Acetonitrile: Reaction Mechanism and Failure of Reactivity-Selecti vol.35, pp.1, 2014, https://doi.org/10.5012/bkcs.2014.35.1.93
  10. Reactions of 4‐NITROPHENYL 5‐substituted Furan‐2‐carboxylates with R 2 NH / R 2 NH 2+ in 20 mol% DMSOhttps://doi.org/10.1002/bkcs.12296