• Title/Summary/Keyword: Nucleation layer

Search Result 146, Processing Time 0.025 seconds

The Effect of Particle Size on Rheological Properties of Highly Concentrated Ag Nanosol (초 고농도 Ag 나노 졸의 입자크기 제어가 잉크 점성거동에 미치는 영향)

  • Song, Hae-Chon;Nham, Sahn;Lee, Byong-Seok;Choi, Young-Min;Ryu, Beyong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • The rheological properties of highly concentrated Ag nano sol depending on particle size were studied. The Ag nano sol was prepared by reducing the Ag ion in aqueous solution. The size of Ag nano particle was controlled by two steps of nucleation and growth, and the thickness of adsorption layer was varied by molecular weight of polyelectrolytes. The polyelectrolytes acted as not only ionic complex agent in ionic state and but also dispersant after formation of Ag nano sol. The effective volume was controlled by combination of varying the molecular weight of polyelectrolytes and the size Ag nano sol. The particle size and the viscosity of nano sol were characterized by particle size analyzer, HR-TEM and cone & plate viscometer. It was found that the 10 nm and 40 nm-sized Ag nano sols were prepared by controlling the nucleation and growth steps, respectively. Finally, we could prepare highly concentrated Ag nano sol over 50 wt%.

Relationship between Concentration of Alcian Blue and Mechanical Properties on High Current Density Copper Electroplating (고전류밀도 구리도금공정에서 알시안블루(Alcian Blue) 농도와 기계적 특성과의 상관관계)

  • Woo, Tae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.160-168
    • /
    • 2020
  • The current density in copper electroplating is directly related with the productivity; then, to increase the productivity, an increase in current density is required. This study is based on an analysis of changes in surface characteristics and mechanical properties by applying the addition of Alcian Blue (AB, C56H68Cl4CuN16S4). The amount of Alcian Blue in the electrolytes is changed from 0 to 100 ppm. When Alcian Blue is added at 20 ppm, a seed layer is formed homogeneously on the surface at the initial stage of nucleation. However, crystals electroplated in electrolytes with more than 40 ppm of Alcian Blue are observed to have growth in the vertical direction on the surface and the shapes are like pyramids. This tendency of initial nucleation formation causes protrusions when the thickness of copper foil is 12 ㎛. Thereafter, a lot of extrusions are observed on the group of 100 ppm Alcian Blue. Tensile strength of groups with added Alcian Blue increased by more than 140% compare to no-addition group, but elongation is reduced. These results are due to the decrease of crystal size and changes of prior crystal growth plane from (111) and (200) to (220) due to Alcian Blue.

Effects of Wheel Condition on Solidification Characteristics of Al-Cu Polycrystalline Ribbon (Al-Cu 다결정 리본의 응고거동에 미치는 휠조건의 영향)

  • Kim, Ju-Hyung;Lee, Sang-Mok;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.276-285
    • /
    • 1997
  • The effect of wheel surface condition on solidification behavior of Al-Cu ribbon was investigated in order to establish extreme levels of heat extraction. The condition of wheel surface was changed either by heating the wheel surface up to $200^{\circ}C$ or by coating boron nitride(BN) onto the the rim of a wheel. Heating the wheel surface up to $200^{\circ}C$ improved the wetting behavior between the molten metal and the rotating wheel, leading to an increase in the ratio of columnar structure to the entire thickness of Al-4.3wt%Cu and Al-33.2wt%Cu ribbons. For Al-4.3wt%Cu ribbon, assuming one grain as a single heterogeneous nucleation event at the contact point, the nucleation density with the wheel surface heated to $200^{\circ}C$, was $4{\times}10^6/mm^2$, and in the cases of BN coating with thin and thick layers, $10^5/mm^2$ and $5{\times}10^4/mm^2$, respectively. The largest cooling capacity of the wheel corresponded to the heated wheel surface, and as the thickness of BN coating layer increased, the cooling capacity of the wheel gradually decreased.

  • PDF

Structural and Electrical Properties of PZT(10/90)/PZT(90/10) Heterolayered Thin Films (PZT(10/90)/PZT(90/10) 이종층 박막의 구조적, 전기적 특성)

  • Lee, Seong-Gap;Kim, Gyeong-Tae;Bae, Seon-Gi;Lee, Yeong-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.98-102
    • /
    • 2000
  • Ferroelectric PZT heterolayered thin films were fabricated by spin coating method on the Pt/Ti/SiO2/Si substrate using PZT(10/90) and PZT(90/10) m7etal alkoxide solutions. All PZT heterolayered films showed a homogeneous grain structures without presence of rosette structure. It can be assumed that the lower PZT layers played a role of nucleation site for the formation of the upper PZT layer. Pb-deficient PZT phase was formed at PZT/Pt interface due to the diffusion of Pb element into a Pt bottom electrode. The relative dielectric constant and the dielectric loss of the PZT-6 film were 567 and 3.6%, respectively. Increasing the number of coatings, remanent polarization and coercive field were decreased and the values of the PZT-6 heterolayered film were $7.18\muC/cm^2$ and 68.5kV/cm, respectively. Leakage current densities were increased with increasing the number of coatings, and the value of the PZT-4 film was about $7\times10-8A/cm^2$ at 0.05MV/cm.

  • PDF

Effect of Nucleation and Growth Dynamics on Saturation Magnetization of Chemically Synthesized Fe Nanoparticles

  • Ogawa, T.;Seto, K.;Hasegawa, D.;Yang, H.T.;Kura, H.;Doi, M.;Takahashi, M.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.308-311
    • /
    • 2011
  • In order to obtain mono-dispersed Fe NPs with high saturation magnetization, quantitative analysis method to investigate the growth dynamics of the Fe NPs synthesized by a conventional thermal decomposition method has been developed. As a result, fast nucleation process promotes formation of ~4 nm of initial nucleus with a non-equilibrium phase, resulting in low saturation magnetization. And slow particle growth with atomic-scaled surface precipitation mode (< 100 atoms/($min{\cdot}nm^2$)) can form the growth layer on the surface of initial nucleus with high saturation magnetization (~190 emu/$g_{Fe}$) as an equilibrium a phase of Fe. Therefore, higher stabilization of small initial nucleus generated just after the injection of $Fe(CO)_5$ should be one of the key issues to achieve much higher $M_s$ of Fe NPs.

Preparation of Gold Nanoisland Arrays from Layer-by-Layer Assembled Nanoparticle Multilayer Films

  • Choi, Hyung-Y.;Guerrero, Michael S.;Aquino, Michael;Kwon, Chu-Hee;Shon, Young-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.291-297
    • /
    • 2010
  • This article introduces a facile nanoparticle self-assembly/annealing method for the preparation of nanoisland films. First, nanoparticle-polymer multilayer films are prepared with layer-by-layer assembly. Nanoparticle multilayer films are then annealed at $~500^{\circ}C$ in air to evaporate organic matters from the films. During the annealing process, the nanoparticles on the solid surface undergo nucleation and coalescence, resulting in the formation of nanostructured gold island arrays. By controlling the overall thickness (number of layers) of nanoparticle multilayer films, nanoisland films with various island density and different average sizes are obtained. The surface property of gold nanoisland films is further controlled by the self-assembly of alkanethiols, which results in an increased surface hydrophobicity of the films. The structure and characteristics of these nanoisland film arrays are found to be quite comparable to those of nanoisland films prepared by vacuum evaporation method. However, this self-assembly/annealing protocol is simple and requires only common laboratory supplies and equipment for the entire preparation process.

Heat-induced coarsening of layer-by-layer assembled mixed Au and Pd nanoparticles

  • Shon, Young-Seok;Shon, Dayeon Judy;Truong, Van;Gavia, Diego J.;Torrico, Raul;Abate, Yohannes
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.57-67
    • /
    • 2014
  • This article shows the coarsening behavior of nanoparticle multilayers during heat treatments which produce larger metallic nanostructures with varying shapes and sizes on glass slides. Nanoparticle multilayer films are initially constructed via the layer-by-layer self-assembly of small and monodispersed gold and/or palladium nanoparticles with different compositions (gold only, palladium only, or both gold and palladium) and assembly orders (compounding layers of gold layers over palladium layers or vice versa). Upon heating the slides at $600^{\circ}C$, the surface nanoparticles undergo coalescence becoming larger nanostructured metallic films. UV-Vis results show a clear reliance of the layering sequence on the optical properties of these metal films, which demonstrates an importance of the outmost (top) layers in each nanoparticle multilayer films. Topographic surface features show that the heat treatments of nanoparticle multilayer films result in the nucleation of nanoparticles and the formation of metallic cluster structures. The results confirm that different composition and layering sequence of nanoparticle multilayer films clearly affect the coalescence behavior of nanoparticles during heat treatments.

Morphology Control of ZnO Nanostructures by Surfactants During Hydrothermal Growth (수열합성중 계면활성제를 이용한 ZnO 나노구조 형상 제어)

  • Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.270-275
    • /
    • 2016
  • We report on an all-solution-processed hydrothermal method to control the morphology of ZnO nanostructures on Si substrates from three-dimensional hemispherical structures to two-dimensional thin film layers, by controlling the seed layer and the molar contents of surfactants during their primary growth. The size and the density of the seed layer, which is composed of ZnO nanodots, change with variation in the solute concentration. The ZnO nanodots act as heterogeneous nucleation sites for the main ZnO nanostructures. When the seed layer concentration is increased, the ZnO nanostructures change from a hemispherical shape to a thin film structure, formed by densely packed ZnO hemispheres. In addition, the morphology of the ZnO layer is systematically controlled by using trisodium citrate, which acts as a surfactant to enhance the lateral growth of ZnO crystals rather than a preferential one-dimensional growth along the c-direction. X-ray diffraction and energy dispersive X-ray spectroscopy results reveal that the ZnO structure is wurtzite and did not incorporate any impurities from the surfactants used in this study.

Crystal Growth of Mn-Zn Ferrite form High-Temperature Solutions (융제법에 의한 Mn-Zn Ferrite 단결정성장에 관한 연구)

  • 이성국;오근호;강원호
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.5
    • /
    • pp.461-469
    • /
    • 1987
  • Single crystals of Mn-Zn Ferrite were grown by slow cooling method using Na2B4O7 as flux agent. The effects of flux content and cooling rate on the types of crystals, and the relation between supersaturation and growth mechanism were studied. As a result, the types of grown crystals occurred as plate, hopper and octahedral crystals. The occurrence of these crystal types was dependent on flux content. The habit was found to correlate with the growth rate and supersaturation. The lateral growth of a dendritic crystal is related to the twin layer. The growth of crystals from borax melts mainly occurred by the layer-spreading growth following corner and edge nucleation caused by high supersaturation in the melt. Especially, the plate crystals were produced on top of the melts. The hopper and octahedral crystals occurred at lower supersaturation than the plate crystals.

  • PDF

An Experimental Study on the Frost Prevention using Micro Liquid Film of an Antifreeze Solution

  • Chang Young-Soo;Yun Won-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.66-75
    • /
    • 2006
  • The effect of antifreeze solution liquid film on the frost prevention is experimentally investigated. It is desirable that the antifreeze solution spreads widely on the heat exchanger surface forming thin liquid film to prevent frost nucleation while having small thermal resistance across the film. A porous layer coating technique is adopted to improve the wettability of the antifreeze solution on a parallel plate heat exchanger. The antifreeze solution spreads widely on the heat exchanger surface with $100{\mu}m$ thickness by the capillary force resulted from the porous structure. It is observed that the antifreeze solution liquid film prevents a parallel plate heat exchanger from frosting. The reductions of heat and mass transfer rate caused by the thin liquid film are only $1{\sim}2%$ compared with those for non-liquid film surface.