DOI QR코드

DOI QR Code

Morphology Control of ZnO Nanostructures by Surfactants During Hydrothermal Growth

수열합성중 계면활성제를 이용한 ZnO 나노구조 형상 제어

  • Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 박일규 (서울과학기술대학교 신소재공학과)
  • Received : 2016.07.28
  • Accepted : 2016.08.10
  • Published : 2016.08.28

Abstract

We report on an all-solution-processed hydrothermal method to control the morphology of ZnO nanostructures on Si substrates from three-dimensional hemispherical structures to two-dimensional thin film layers, by controlling the seed layer and the molar contents of surfactants during their primary growth. The size and the density of the seed layer, which is composed of ZnO nanodots, change with variation in the solute concentration. The ZnO nanodots act as heterogeneous nucleation sites for the main ZnO nanostructures. When the seed layer concentration is increased, the ZnO nanostructures change from a hemispherical shape to a thin film structure, formed by densely packed ZnO hemispheres. In addition, the morphology of the ZnO layer is systematically controlled by using trisodium citrate, which acts as a surfactant to enhance the lateral growth of ZnO crystals rather than a preferential one-dimensional growth along the c-direction. X-ray diffraction and energy dispersive X-ray spectroscopy results reveal that the ZnO structure is wurtzite and did not incorporate any impurities from the surfactants used in this study.

Keywords

References

  1. S. Xu and Z. L. Wang: Nano Research, 4 (2011) 1013. https://doi.org/10.1007/s12274-011-0160-7
  2. Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton and J. R. LaRoche: Mat. Sci. Eng. R, 47 (2004) 1. https://doi.org/10.1016/j.mser.2004.09.001
  3. Z. L. Wang and J. Song: Science, 312 (2006) 242. https://doi.org/10.1126/science.1124005
  4. S. H. Baek and I. K. Park: J. Korean Powder Metall. Inst., 22 (2015) 331. https://doi.org/10.4150/KPMI.2015.22.5.331
  5. J. H. Lim, D. K. Hwang, M. K. Kwon, I. K. Park, S. Na and S. J. Park: phys. stat. sol. (c), 2 (2005) 2533. https://doi.org/10.1002/pssc.200461438
  6. Y. S. Lee, S. N. Lee and I. K. Park: Ceramics International, 39 (2013) 3043. https://doi.org/10.1016/j.ceramint.2012.09.083
  7. S. H. Baek and I. K. Park: J. Korean Powder Metall. Inst., 22 (2015) 391 (Korean). https://doi.org/10.4150/KPMI.2015.22.6.391
  8. K. S. Kim, H. Song, S. H. Nam, S. M. Kim, H. Jeong, W. B. Kim and G. Y. Jung: Adv. Mater., 24 (2012) 792. https://doi.org/10.1002/adma.201103985
  9. Y. I. Jung, B. Y. Noh, Y. S. Lee, S. H. Baek, J. H. Kim and I. K. Park: Nanoscale Res. Lett., 7 (2012) 43. https://doi.org/10.1186/1556-276X-7-43
  10. S. Cho, J. W. Jang, S. H. Jung, B. R. Lee, E. Oh and K. H. Lee: Langmuir, 25 (2009) 3825. https://doi.org/10.1021/la804009g
  11. S. Cho, J. W. Jang, S. H. Jung, B. R. Lee, E. Oh and K. H. Lee: Langmuir, 27 (2011) 371. https://doi.org/10.1021/la103600c
  12. P. Che, D. Fang, D. Zhang, J. Feng, J. Wang, N. Hu and J. Meng: J. Coord. Chem., 58 (2005) 1581. https://doi.org/10.1080/00958970500244112
  13. S. Das, K. Dutta and A. Pramanik: CrystEngComm, 15 (2013) 6349. https://doi.org/10.1039/c3ce40822a
  14. R. Wahab, Y. S. Kim and H. S. Shin: Mater. Trans., 50 (2009) 2092. https://doi.org/10.2320/matertrans.M2009099