• Title/Summary/Keyword: Nuclear waste storage

Search Result 202, Processing Time 0.03 seconds

The structural and non-linear dynamic analysis for radioactive waste container

  • Yu-Yu Shen;Kuei-Jen Cheng;Hsoung-Wei Chou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3010-3016
    • /
    • 2023
  • In recent years, the development of radioactive waste containers for nuclear facility decommissioning and dismantling is a critical issue because the Taiwan domestic boiling water reactor nuclear power plant is going to be decommissioned. The main purpose of this research is to design a metal container that meets the structural requirements of related regulations. At first, the shielding analysis was performed by varying dimensions of radioactive waste to determine the storage efficiency of the container. Then, a series of structural analyses for operational and accidental conditions of the container with full load were conducted, such as lifting, stacking, and drop impact conditions. On the other hand, the field drop impact tests were carried out to ensure structural integrity. The present research demonstrates the structural safety of the developed container for decommissioned nuclear facilities in Taiwan.

Korean Status and Prospects for Radioactive Waste Management

  • Song, M.J.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Since the initial introduction of nuclear power to Korea in 1978, rapid growth in nuclear power has been achieved. This large nuclear power generation program has produced a significant amount of radioactive waste, both low- and intermediate-level waste (LILW) and spent nuclear fuel (SNF); and the amount of waste is steadily growing. For the management of LILW, the Wolsong LILW Disposal Center, which has a final waste disposal capacity of 800,000 drums, is under construction, and is expected to be completed by June 2014. Korean policy about how to manage the SNF has not yet been decided. In 2004, the Atomic Energy Commission decided that a national policy for SNF management should be established considering both technological development and public consensus. Currently, SNF is being stored at reactor sites under the responsibility of plant operator. The at-reactor SNF storage capacity will run out starting in 2024. In this paper, the fundamental principles and steps for implementation of a Korean policy for national radioactive waste management are introduced. Korean practices and prospects regarding radioactive waste management are also summarized, with a focus on strategy for policy-making on SNF management.

On the use of flyash-lime-gypsum (FaLG) bricks in the storage facilities for low level nuclear waste

  • Sidhu, Baltej Singh;Dhaliwal, A.S.;Kahlon, K.S.;Singh, Suhkpal
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.674-680
    • /
    • 2022
  • In the present study, radiation shielding and protection ability of prepared Flyash-lime-Gypsum (FaLG) bricks has been studied in terms of energy exposure build up factors and dose parameters. The energy exposure build up factors of Flyash-lime-Gypsum (FaLG) bricks have been calculated for the energy range of 0.015 MeV-15 MeV and for penetration depth upto 40 mfp directly using a new and simplified Piecewise Linear Spline Interpolation Method (PLSIM). In this new method, the calculations of G.P fitting parameters are not required. The verification and accuracy of this new method has been checked by comparing the results of exposure build up factor for NBS concrete calculated using present method with the results obtained by using G.P fitting method. Further, the relative dose distribution and reduced exposure dose rate for various radioactive isotopes without any shielding material and with Flyash-lime-Gypsum (FaLG) bricks have been calculated in the energy range of 59.59-1332 keV. On the basis of the obtained results, it has been reported that the prepared Flyash-lime-Gypsum (FaLG) bricks possess satisfactory radiation shielding properties and can be used as environmentally safe storage facilities for low level nuclear waste.

Application of Logistic Simulation for Transport of SFs From Kori Site to an Assumed Interim Storage Facility

  • Kim, Young-Min;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.61-74
    • /
    • 2021
  • A paradigm shift in the government's energy policy was reflected in its declaration of early closure of old nuclear plants as well as cancellation of plans for the construction of new plants. To this end, unit 1 of Kori Nuclear Power Plant was permanently shut down and is set for decommission. Based on these changes, the off-site transport of spent fuels from nuclear power plants has become a critical issue. The purpose of this study is to develop an optimized method for transportation of spent fuels from Kori Nuclear Power Plant's units 1, 2, 3, and 4 to an assumed interim storage facility by simulating the scenarios using the Flexsim software, which is widely used in logistics and manufacturing applications. The results of the simulation suggest that the optimized transport methods may contribute to the development of delivery schedule of spent fuels in the near future. Furthermore, these methods can be applied to decommissioning plan of nuclear power plants.

Analysis of Characteristics of Spent Fuels on Long-Term Dry Storage Condition

  • Yoon, Suji;Park, Kwangheon;Yun, Hyungju
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.205-214
    • /
    • 2021
  • Currently, the interim storage pools of spent fuels in South Korea are expected to become saturated from 2024. It is required to prepare an operation plan of a domestic dry storage facility during a long-term period, with the researches on safety evaluation methods. This study modified the FRAPCON code to predict the spent fuel integrity evaluation such as the axial cladding temperature, the hoop stress and hydrogen distribution in dry storage. The cladding temperature in dry storage was calculated using the COBRA-SFS code with the burnup information which was calculated using the FRAPCON code. The hoop stress was calculated using the ideal gas equation with spent fuel information such as rod internal pressure. Numerical analysis method was used to calculate the degree of hydrogen diffusion according to the hydrogen concentration and temperature distribution during a dry storage period. Before 50 years of dry storage, the cladding temperature and hoop stress decreased rapidly. However, after 50 years, they decreased gradually and the cladding temperature was below 400 K. The initial temperature distribution and hydrogen concentration showed a parabolic line, but hydrogen was transferred by the hydrogen concentration and temperature gradient over time.

Nuclear waste attributes of near-term deployable small modular reactors

  • Taek K. Kim;L. Boing;B. Dixon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1100-1107
    • /
    • 2024
  • The nuclear waste attributes of near-term deployable SMRs were assessed using established nuclear waste metrics, which are the DU mass, SNF mass, volume, activity, decay heat, radiotoxicity, and decommissioning LLW volumes. Metrics normalized per unit electricity generation were compared to a reference large PWR. Three SMRs, VOYGR, Natrium, and Xe-100, were selected because they represent a range of reactor and fuel technologies and are active designs deployable by the decade's end. The SMR nuclear waste attributes show both some similarities to the PWR and some significant differences caused by reactor-specific design features. The DU mass is equivalent to or slightly higher than the PWR. Back-end waste attributes for SNF disposition vary, but the differences have a limited impact on long-term repository isolation. SMR designs can vary significantly in SNF volume (and thus heat generation density). However, these differences are amenable to design optimization for handling, storage, transportation, and disposal technologies. Nuclear waste attributes from decommissioning vary depending on design and decommissioning technology choices. Given the analysis results in this study and assuming appropriate waste management system and operational optimization, there appear to be no major challenges to managing SMR nuclear wastes compared to the reference PWR.