• Title/Summary/Keyword: Nuclear waste repository

Search Result 266, Processing Time 0.026 seconds

Waste Management and Treatment of Decommissioned Radioactive Combustible Waste

  • Min, B.Y.;Lee, Y.J.;Yun, G.S.;Lee, K.W.;Moon, J.K.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 2013
  • A large quantity of radioactive waste was generated during the decommissioning of the KRR and UCF. The radioactive waste was packed into 200 liter drums and 4m3 containers and these were temporarily stored onsite until their final disposal in the national repository facility. Some of the releasable waste was freely released and utilized for non-nuclear industries. The combustible wastes were treated by the utilization of an incinerator with a capacity of on average 20 kg/hr.

Proposal of Application Method for Concentration Averaging of Radioactive Waste in Korea by Using CA BTP of US NRC

  • Jiyoung Yi;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.347-357
    • /
    • 2023
  • United States Nuclear Regulatory Commission (U.S. NRC) specifies regulations on obtaining licenses and describes the technical position on the average waste concentration, also known as Concentration Averaging and Encapsulation Branch Technical Position (CA BTP); CA BTP helps classify blendable waste and discrete items and address concentration averaging. The technical position details are reviewed and compared in a real environment in Korea. A few cases of concentration averaging based on the application of CA BTP to domestic radioactive waste are presented, and the feasibility of the application is assessed. The radioactive waste considered herein does not satisfy the Disposal Concentration Limit (DCL) of the second-phase disposal facility while applying the preliminary classification. However, if CA BTP is applied when the radioactive waste is mixed with other radioactive waste items in a large and heavy container, it can be disposed of at the second-phase disposal facility in Gyeongju Repository. To apply the CA BTP of the U.S. NRC, it is necessary to investigate the safety assessment conditions of the US and Korea.

Safety Assessment on Long-term Radiological Impact of the Improved KAERI Reference Disposal System (the KRS+)

  • Ju, Heejae;Kim, In-Young;Lee, Youn-Myoung;Kim, Jung-Woo;Hwang, Yongsoo;Choi, Heui-joo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.75-87
    • /
    • 2020
  • The Korea Atomic Energy Research Institute (KAERI) has developed geological repository systems for the disposal of high-level wastes and spent nuclear fuels (SNFs) in South Korea. The purpose of the most recently developed system, the improved KAERI Reference Disposal System Plus (KRS+), is to dispose of all SNFs in Korea with improved disposal area efficiency. In this paper, a system-level safety assessment model for the KRS+ is presented with long-term assessment results. A system-level model is used to evaluate the overall performance of the disposal system rather than simulating a single component. Because a repository site in Korea has yet to be selected, a conceptual model is used to describe the proposed disposal system. Some uncertain parameters are incorporated into the model for the future site selection process. These parameters include options for a fractured pathway in a geosphere, parameters for radionuclide migration, and repository design dimensions. Two types of SNF, PULS7 from a pressurized water reactor and Canada Deuterium Uranium from a heavy water reactor, were selected as a reference inventory considering the future cumulative stock of SNFs in Korea. The highest peak radiological dose to a representative public was estimated to be 8.19×10-4 mSv·yr-1, primarily from 129I. The proposed KRS+ design is expected to have a high safety margin that is on the order of two times lower than the dose limit criterion of 0.1 mSv·yr-1.

Effect of Deformation Zones on the State of In Situ Stress at a Candidate Site of Geological Repository of Nuclear Waste in Sweden (스웨덴 방사성 폐기물 처분장 후보부지의 사례를 통해 살펴본 대규모 변형대가 암반의 초기응력에 미치는 영향)

  • Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.134-148
    • /
    • 2008
  • The state of in situ stress is an important factor in considering the suitability of a site as a geological repository for nuclear waste. In this study, three-dimensional distinct numerical analysis was conducted to investigate the effect of deformation zones on the state of stress in the Oskarshamn area, which is one of two candidate sites in Sweden. A discontinuum numerical model was constructed by explicitly representing the numerous deformation zones identified from site investigation and far-field tectonic stress was applied in the constructed model. The numerical model successfully captured the variation of measured stress often observed in the rock mass containing large-scale fractures, which shows that numerical analysis can be an effective tool in improving the understanding of the state of stresses. Discrepancies between measured and modelled stress are attributed to the inconsistent quality of measured stress, uncertainty in geological geometry. and input data for fractures.

Two-Dimensional Nuclide Transport Around a HLW Repository

  • Lee, Youn-Myoung;Kang, Chul-Hyung;Hwang, Yong-Soo;Chun, Kwan-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.432-443
    • /
    • 1999
  • Using a two-dimensional numerical model, nuclide transport in the buffer between the canister and adjacent rock in a high-level radioactive waste repository is dealt with. Calculations are made for a typical case with a three-member decay chain, $^{234}$ U longrightarrow $^{230}$ Th longrightarrow $^{226}$ Ra. The solution method used here is based on a physically exact formulation by a control volume method directly integrating the governing equation over each control volume.

  • PDF

A Control Volume Scheme for Three-Dimensional Transport: Buffer and Matrix Effects on a Decay Chain Transport in the Repository

  • Lee, Y.M.;Y.S. Hwang;Kim, S.G.;C.H. Kang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.218-231
    • /
    • 2002
  • Using a three-dimensional numerical code, B3R developed for nuclide transport of an arbitrary length of decay chain in the buffer between the canister and adjacent rock in a high- level radioactive waste repository by adopting a finite difference method utilizing the control- volume scheme, some illustrative calculations have been done. A linear sorption isotherm, nuclide transport due to diffusion in the buffer and the rock matrix, and advection and dispersion along thin rigid parallel fractures existing in a saturated porous rock matrix as well as diffusion through the fracture wall into the matrix is assumed. In such kind of repository, buffer and rock matrix are known to be important physico-chemical harriers in nuclide retardation. To show effects of buffer and rock matrix on nuclide transport in HLW repository and also to demonstrate usefulness of B3R, several cases of breakthrough curves as well as three- dimensional plots of concentration isopleths associated with these two barriers are introduced for a typical case of decay chain of $^{234}$ Ulongrightarrow$^{230}$ Thlongrightarrow$^{226}$ Ra, which is the most important chain as far as the human environment is concerned.

Physicochemical Property of Borosilicate Glass for Rare Earth Waste From the PyroGreen Process

  • Young Hwan Hwang;Mi-Hyun Lee;Cheon-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.271-281
    • /
    • 2023
  • A study was conducted on the vitrification of the rare earth oxide waste generated from the PyroGreen process. The target rare earth waste consisted of eight elements: Nd, Ce, La, Pr, Sm, Y, Gd, and Eu. The waste loading of the rare earth waste in the developed borosilicate glass system was 20wt%. The fabricated glass, processed at 1,200℃, exhibited uniform and homogeneous surface without any crystallization and precipitation. The viscosity and electrical conductivity of the melted glass at 1,200℃ were 7.2 poise and 1.1 S·cm-1, respectively, that were suitable for the operation of the vitrification facility. The calculated leaching index of Cs, Co, and Sr were 10.4, 10.6, and 9.8, respectively. The evaluated Product Consistency Test (PCT) normalized release of the glass indicated that the glass satisfied the requirements for the disposal acceptance criteria. Furthermore, the pristine, 90 days water immersed, 30 thermal cycled, and 10 MGy gamma ray irradiated glasses exhibited good compressive strength. The results indicated that the fabricated glass containing rare earth waste from the PyroGreen process was acceptable for the disposal in the repository, in terms of chemical durability and mechanical strength.

The Modified Eulerian-Lagrangian Formulation for Cauchy Boundary Condition Under Dispersion Dominated Flow Regimes: A Novel Numerical Approach and its Implication on Radioactive Nuclide Migration or Solute Transport in the Subsurface Environment

  • Sruthi, K.V.;Suk, Heejun;Lakshmanan, Elango;Chae, Byung-Gon;Kim, Hyun-su
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.2
    • /
    • pp.10-21
    • /
    • 2015
  • The present study introduces a novel numerical approach for solving dispersion dominated problems with Cauchy boundary condition in an Eulerian-Lagrangian scheme. The study reveals the incapability of traditional Neuman approach to address the dispersion dominated problems with Cauchy boundary condition, even though it can produce reliable solution in the advection dominated regime. Also, the proposed numerical approach is applied to a real field problem of radioactive contaminant migration from radioactive waste repository which is a major current waste management issue. The performance of the proposed numerical approach is evaluated by comparing the results with numerical solutions of traditional FDM (Finite Difference Method), Neuman approach, and the analytical solution. The results show that the proposed numerical approach yields better and reliable solution for dispersion dominated regime, specifically for Peclet Numbers of less than 0.1. The proposed numerical approach is validated by applying to a real field problem of radioactive contaminant migration from radioactive waste repository of varying Peclet Number from 0.003 to 34.5. The numerical results of Neuman approach overestimates the concentration value with an order of 100 than the proposed approach during the assessment of radioactive contaminant transport from nuclear waste repository. The overestimation of concentration value could be due to the assumption that dispersion is negligible. Also our application problem confirms the existence of real field situation with advection dominated condition and dispersion dominated condition simultaneously as well as the significance or advantage of the proposed approach in the real field problem.

Nuclear Criticality Analyses of Two Different Disposal Canisters for Deep Geological Repository Considering Burnup Credit

  • Hyungju Yun;Manho Han;Seo-Yeon Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.501-510
    • /
    • 2022
  • The nuclear criticality analyses considering burnup credit were performed for a spent nuclear fuel (SNF) disposal cell consisting of bentonite buffer and two different types of SNF disposal canister: the KBS-3 canister and small standardized transportation, aging and disposal (STAD) canister. Firstly, the KBS-3 & STAD canister containing four SNFs of the initial enrichment of 4.0wt% 235U and discharge burnup of 45,000 MWD/MTU were modelled. The keff values for the cooling times of 40, 50, and 60 years of SNFs were calculated to be 0.79108, 0.78803, and 0.78484 & 0.76149, 0.75683, and 0.75444, respectively. Secondly, the KBS-3 & STAD canister with four SNFs of 4.5wt% and 55,000 MWD/MTU were modelled. The keff values for the cooling times of 40, 50, and 60 years were 0.78067, 0.77581, and 0.77335 & 0.75024, 0.74647, and 0.74420, respectively. Therefore, all cases met the performance criterion with respect to the keff value, 0.95. The STAD canister had the lower keff values than KBS-3. The neutron absorber plates in the STAD canister significantly affected the reduction in keff values although the distance among the SNFs in the STAD canister was considerably shorter than that in the KBS-3 canister.

Validation of Performance of Engineered Barriers in a Geological Repository: Review of In-Situ Experimental Approach (심지층처분장 공학적방벽 성능 실증: 현장실험적 접근법 검토)

  • Cho, Won-Jin;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.137-164
    • /
    • 2018
  • The guarantee of the performance of the engineered barriers in a geological repository is very important for the long-term safety of disposal as well as the efficient design of the repository. Therefore, the performance of the engineered barriers under repository condition should be demonstrated by in-situ experiments conducted in an underground research laboratory. This article provides a review of the major in-situ experiments that have been carried out over the past several decades at underground research laboratories around the world to validate the performance of engineered barriers of a repository, as well as their results. In-situ experiments to study the coupled thermal-hydraulic-mechanical behavior of the engineered barrier system used to simulate the post-closure performance of the repository are analyzed as a priority. In addition, in-situ experiments to investigate the performance of the buffer material under a real repository environment have been reviewed. State-of-the art in-situ validations of the buffer-concrete interaction, and the installation of the buffer, backfill and plug, as well as characterization of the near-field rock and the corrosion of the canister materials are, also performed.