• Title/Summary/Keyword: Nuclear waste

Search Result 2,037, Processing Time 0.032 seconds

A Proposal for the Management Standards of Radioactive Mixed Waste in Korea (한국의 방사성혼합폐기물 관리기준 제안)

  • Lee, Byeong Gwan;Kim, Chang Lak;Lee, Sun Kee;Kim, Heon;Sung, Suk Hyun;Park, Hae Soo;Kong, Chang Sig
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.85-96
    • /
    • 2021
  • Radioactive mixed waste (RMW) means waste mixed with radioactive substances and hazardous substances. In Korea, there are definitions and disposal restrictions on RMW in the Nuclear Safety Management Act, but it is difficult to apply because the contents are insufficient, so this paper proposed applicable management standards. The main RMW generated from nuclear power plants is waste oil, waste asbestos, PCB, and waste fluorescent liquid, and their radiation characteristics are mostly at very low levels and some are estimated at low levels. In addition to nuclear power plants, RMW also occurs in research institutes, industries, and hospitals. The acceptance criteria of all disposal facilities in the world basically prohibit disposal of RMW unless the hazardous substances of RMW are removed or mitigated below the standard value. Cases in Korea, the United States, Japan and Europe were reviewed to propose the RMW management standards in Korea. With reference to the results of the above review, this paper clearly defined RMW and proposed detailed management standards for the separation, storage, treatment and disposal of hazardous substances by applying the Waste Control Act. It also mentioned legislation of management standards, regulatory methods, and acceptance criteria of disposal facility operator.

A new proposal for controlled recycling of decommissioning concrete waste as part of engineered barriers of a radioactive waste repository and related comprehensive safety assessment

  • In Gyu Chang;Jae Hak Cheong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.530-545
    • /
    • 2023
  • As an alternative to conventional management options for a lot of concrete waste from decommissioning of nuclear power plants, a set of scenarios for controlled recycling of decommissioning concrete waste as engineered barriers of a radioactive waste repository was proposed, and a comprehensive safety assessment model and framework covering both pre-and post-closure phases was newly developed. The new methodology was applied to a reference vault-type repository, and the ratios of derived concentration limits to unconditional clearance levels of eighteen radionuclides for controlled recycling were provided for three sets of dose criteria (0.01, 1, and 20 mSv/y for the pre-closure and 0.01 mSv/y for the post-closure phases). It turns out that decommissioning concrete waste whose concentration is much higher than the unconditional clearance level can be recycled even when the dose criterion 0.01 mSv/y is applied. Moreover, a case study on ABWR bio-shield shows that the fraction of recyclable concrete waste increases significantly by increasing the dose criterion for the radiation worker in the pre-closure phase or the duration of storage prior to recycling. The results of this study are expected to contribute to demonstrating the feasibility of controlled recycling of a lot of decommissioning concrete waste within nuclear sectors.

Proposal of Application Method for Concentration Averaging of Radioactive Waste in Korea by Using CA BTP of US NRC

  • Jiyoung Yi;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.347-357
    • /
    • 2023
  • United States Nuclear Regulatory Commission (U.S. NRC) specifies regulations on obtaining licenses and describes the technical position on the average waste concentration, also known as Concentration Averaging and Encapsulation Branch Technical Position (CA BTP); CA BTP helps classify blendable waste and discrete items and address concentration averaging. The technical position details are reviewed and compared in a real environment in Korea. A few cases of concentration averaging based on the application of CA BTP to domestic radioactive waste are presented, and the feasibility of the application is assessed. The radioactive waste considered herein does not satisfy the Disposal Concentration Limit (DCL) of the second-phase disposal facility while applying the preliminary classification. However, if CA BTP is applied when the radioactive waste is mixed with other radioactive waste items in a large and heavy container, it can be disposed of at the second-phase disposal facility in Gyeongju Repository. To apply the CA BTP of the U.S. NRC, it is necessary to investigate the safety assessment conditions of the US and Korea.

DEVELOPMENT OF ANODIC STRIPPING VOLTAMMETRY FOR THE DETERMINATION OF PALLADIUM IN HIGH LEVEL NUCLEAR WASTE

  • Bhardwaj, T.K.;Sharma, H.S.;Jain, P.C.;Aggarwal, S.K.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.939-944
    • /
    • 2012
  • Deposition potential, deposition time, square wave frequency, rotation speed of the rotating disc electrode, and palladium concentration were studied on a Glassy Carbon Electrode (GCE) in 0.01M HCl for the determination of palladium in High Level Nuclear Waste (HLNW) by anodic stripping voltammetry. Experimental conditions were optimized for the determination of palladium at two different, $10^{-8}$ and $10^{-7}M$, levels. Error and standard deviation of this method were under 1% for all palladium standard solutions. The developed technique was successfully applied as a subsidiary method for the determination of palladium in simulated high level nuclear waste with very good precision and high accuracy (under 1 % error and standard deviation).