• 제목/요약/키워드: Nuclear reactor internals

검색결과 91건 처리시간 0.021초

APR1400 상부안내구조물 집합체 구조해석 및 측정위치 (Structural Analysis and Measuring Locations of Upper Guide Structure Assembly in APR1400)

  • 고도영;김규형;김성환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.306-311
    • /
    • 2012
  • A reactor vessel internals comprehensive vibration assessment program (RVI CVAP) of an advanced power reactor 1400 (APR1400) is being performed as a non-prototype category-2 type of reactor based on the US Nuclear Regulatory Commission Regulatory Guide (NRC RG) 1.20. The aim of this paper is to present the results of structural response analysis and measuring locations of a upper guide structure (UGS) assembly of the APR1400 reactor. The analysis results of the UGS assembly results show that meet the specified integrity levels of the design acceptance criteria. Also, the measuring locations are set by the analysis results of the UGS assembly and selection criteria of measuring locations prior to this study. These analysis results and measuring locations will be used as fundamental materials to design a measurement system for the APR1400 RVI CVAP.

  • PDF

A Study on the Coolant Mixing Phenomena in the Reactor Lower Plenum

  • Park, Yong-Seog;Park, Goon-Cherl;Um, Kil-Sup
    • Nuclear Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.186-195
    • /
    • 1997
  • When asymmetric thermal-hydraulic conditions occur between cold legs, the core inlet temperature will be nonuniform if the coolant is not mixed perfectly in the lower plenum. These uneven core inlet conditions may induce the change in core power distribution. Thus realistic prediction of thermal mixing is important in such abnormal conditions. In this study, reactor internals, which are scaled down as to conserve the flow area ratio, are set up in the model of KORI Unit 1 with the scaling factor of 1/710 by volume and coolant temperatures are measured beneath the lower core plate. Based on experimental results, the ability of COMMIX-1B code to simulate the coolant mixing phenomena in the lower plenum is estimated. The results show that complete mixing never occurs in any conditions and the mixing pattern is characterized according to the plant type.

  • PDF

Power Density Distribution Calculation of a Pressurized Water Reactor with Fullscope Explicit Modeling by MCNP Code

  • Kim, Jong-Oh;Kim, Jong-Kyung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.179-184
    • /
    • 1996
  • Power density distribution and criticality of a pressurized water reactor are calculated with a Monte Carlo calculation using the MCNP code. The MCNP model is based on one-eighth core symmetry. Individual fuel assemblies are modeled with fullscope three dimensional description except grid spacer. The fuel rod is divided into eight axial segments. Core internals above and below the active fuel region is represented as coolant. After 400 cycle calculations, the system converges to a k value of 1.09151$\pm$0.00066. Fission reaction rate in each rod is also calculated to use as the source term in pressure vessel fluence calculation.

  • PDF

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

원자로 냉각재 펌프용 재료의 화학 제염 공정 시 적용 가능성 평가 (Evaluation of application possibility in chemical decontamination of materials for reactor coolant pump)

  • 김정일;김기준;김성종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.84-94
    • /
    • 2007
  • As a reactor coolant pump(RCP) is operated in the nuclear power system for a long time. so its surface is continuously contaminated by radioactive scales. In order to perform regular or emergency repair about RCP internals a special decontamination process should be used to reduce the radiation from the RCP surface by means of chemical cleaning. In this study, applicable possibility in chemical decontamination for RCP was investigated on the various materials. The STS 304 showed the best electrochemical properties for corrosion resistance than other materials. However, the pitting corrosion was slightly generated in both STS 415 and STS 431 with the increasing numbers of cycle and intergranular corrosion were sporadically observed. The size of their pitting corrosion and intergranular corrosion were also increased with increasing cycle numbers.

유동 덮개 형상이 축소 APR+ 내부 유동분포에 미치는 영향에 대한 수치해석 (Numerical Analysis for the Effect of Flow Skirt Geometry on the Flow Distribution in the Scaledown APR+)

  • 이공희;방영석;우승웅;김도형;강민구
    • 설비공학논문집
    • /
    • 제25권5호
    • /
    • pp.269-278
    • /
    • 2013
  • In this study, in order to examine the applicability of computational fluid dynamics with the porous model to the analysis of APR+ (Advanced Power Reactor Plus) internal flow, simulation was conducted with the commercial multi-purpose computational fluid dynamics software, ANSYS CFX V.14. In addition, among the various reactor internals, the effect of flow skirt geometry on reactor internal flow was investigated. It was concluded that the porous model for some reactor internal structures could adequately predict the hydraulic characteristics inside the reactor in a qualitative manner. If sufficient computation resource is available, the predicted core inlet flow distribution is expected to be more accurate, by considering the real geometry of the internal structures, especially located in the upstream of the core inlet. Finally, depending on the shape of the flow skirt, the flow distribution was somewhat different locally. The standard deviation of the mass flow rate (${\sigma}$) for the original shape of flow skirt was smaller, than that for the modified shape of flow skirt. This means that the original shape of the flow skirt may give a more uniform distribution of mass flow rate at the core inlet plane, which may be more desirable for the core cooling.

Repurposing a Spent Nuclear Fuel Cask for Disposal of Solid Intermediate Level Radioactive Waste From Decommissioning of a Nuclear Power Plant in Korea

  • Mah, Wonjune;Kim, Chang-Lak
    • 방사성폐기물학회지
    • /
    • 제20권3호
    • /
    • pp.365-369
    • /
    • 2022
  • Operating and decommissioning nuclear power plants generates radioactive waste. This radioactive waste can be categorized into several different levels, for example, low, intermediate, and high, according to the regulations. Currently, low and intermediate-level waste are stored in conventional 200-liter drums to be disposed. However, in Korea, the disposal of intermediate-level radioactive waste is virtually impossible as there are no available facilities. Furthermore, large-sized intermediate-level radioactive waste, such as reactor internals from decommissioning, need to be segmented into smaller sizes so they can be adequately stored in the conventional drums. This segmentation process requires additional costs and also produces secondary waste. Therefore, this paper suggests repurposing the no-longer-used spent nuclear fuel casks. The casks are larger in size than the conventional drums, thus requiring less segmentation of waste. Furthermore, the safety requirements of the spent nuclear fuel casks are severer than those of the drums. Hence, repurposed spent nuclear fuel casks could better address potential risks such as dropping, submerging, or a fire. In addition, the spent nuclear fuel casks need to be disposed in compliance with the regulations for low level radioactive waste. This cost may be avoided by repurposing the casks.

원자로 운전을 위한 압력/온도 한계곡선의 설정 (Generation of Pressure/Temperature Limit Curve for Reactor Operation)

  • 정명조;박윤원
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.155-164
    • /
    • 1997
  • 핵분열로 인한 고온, 고압의 냉각수를 유지하는 원자로 용기는 원자로의 냉각 또는 가열시 압력에 의한 응력과 함께 열응력이 가해지고 원자로 벽의 온도변화에 따라 파괴인성치가 변화하기 때문에 임의의 결함이 존재할 경우 건전성 확보가 쉽지 않다. 따라서 가상결함이 성장하지 않도록 압력과 온도를 조정하면서 냉각 및 가열시킬 필요가 있다. 본 연구에서는 원자로 운전 중 냉각 및 가열시 안전하게 운전하기 위한 압력/온도 한계곡선을 구하는 절차에 필요한 이론을 조사하였고 이의 도출을 위한 해석과정을 전산화하였다. 국내원전 중 가장 오래된 고리 1호기에 대한 압력/온도 한계곡선을 다양한 냉각 및 가열률에 따라 설정하였고 이들 결과를 검토하였다.

  • PDF

중수로 칼란드리아 내장품 원격 육안검사 기술 개발 (Development of Remote Visual Inspection Technology for Calandria & Internal of CANDU NPP)

  • 이상훈;진석홍;문균영
    • 한국압력기기공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.72-77
    • /
    • 2010
  • During the period of reinforcement work for the licensing renewal of CANDU NPP, the fuel channels, Calandria tubes and feeders of CANDU Reactor are replaced. The remote visual inspection of Calandria internal is also performed during the period of reinforcement work. This period is a unique opportunity to inspect the inside of the Calandria. The visual inspection for the Calandria vessel and its internals of Wolsong NPP Unit 1 was performed by Nuclear Engineering & Technology Institute(NETEC) of KHNP. To perform this inspection, NETEC developed equipment applied new technology such as the synchronization of 3D CAD, automatic alignment and control system. The inspection confirmed that the Calandria integrity of Wolsong NPP Unit 1 is perfect.

  • PDF

Development of Automatic Reactor Internal Vibration Monitoring System Using Fuzzy Peak Detection and Vibration Mode Decision Method

  • Kang, Hyun-Gook;Seong, Poong-Hyun;Park, Heui-Youn;Lee, Cheol-Kwon;Koo, In-Soo
    • Nuclear Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.8-16
    • /
    • 1998
  • In this work a method to detect the vibrational peak and to decide the vibrational mode of detected peak for core internal vibration monitoring system which is particularly concerned on the core support barrel (CSB) and fuel assemblies is developed. Flow induced vibration and aging process in the reactor internals cause unsoundness of the internal structure. In order to monitor the vibrational status of core internal, signals from the ex-core neutron detectors are transformed into frequency domain. By analyzing transformed frequency domain signal, an analyst can acquire the information on the vibrational characteristics of the structures, i.e., vibration frequencies of each component, vibrational level, modes of vibration, and the causes of the abnormal vibration, if any. This study is focused on the development of the automated monitoring system. Several methods are surveyed to define the peaks in power spectrum and fuzzy theory is used to automatic detection of the vibrational peaks. Fuzzy algorithm is adopted to define the modes of vibration using the peak values from fuzzy peak recognition, phase spectrum, and coherence spectrum.

  • PDF