• Title/Summary/Keyword: Nuclear magnetic resonance (NMR) spectroscopy

Search Result 238, Processing Time 0.021 seconds

Constructing Overhauser Dynamic Nuclear Polarization-Nuclear Magnetic Resonance System Using Benchtop Electron Paramagnetic Resonance Spectrometer

  • Saun, Seung-Bo;Kim, JiWon;Han, Oc Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • The Nuclear Magnetic Resonance (NMR) technique using Dynamic Nuclear Polarization (DNP) procedures is one of the promising techniques that enable overcoming low sensitivity problems in NMR spectroscopy. We constructed an ODNP-NMR system using a commercial benchtop EPR spectrometer. The $^1H$ NMR peak area of water in aqueous solutions of 4-hydroxy-TEMPO was enhanced more than 95 times in the ODNP-NMR experiments. Our signal enhancement results were about 55% of the previously reported result. This could be due to non-uniform microwave power over a sample and unwanted sample heating by microwave. However, this portable ODNP-NMR spectrometer will be eventually useful for site-specific detection with nano-scale spatial resolutions and molecular dynamics studies with significantly improved signal sensitivity.

Comparison of in Vivo, in Vitro 3T MR Spectroscopy and Proton NMR Spectroscopy for the Fluid from Cystic Tumor: Preliminary Study (낭성 종양의 체액에 대한 생체내, 생체외 3T 양성자 자기공명분 광법과 양성자 핵자기공명기법의 비교: Preliminary Study)

  • Lee, Hui-Joong;Kim, Jong-Yeol;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.107-114
    • /
    • 2008
  • Purpose : The aim of this study is to determine possibility of application of in vivo proton ($^1H$) magnetic resonance spectroscopy (MRS) in distinguishing cystic mass arising around pancreas by comparison of in vivo MRS, in vitro MRS using 3T MR machine, based on nuclear magnetic resonance (NMR). Materials and Methods : We obtained spectra of in vivo MRS, in vitro MRS and NMR from abdominal mass arising around pancreas (mucinous cystic neoplasm=5, intraductal papillary mucin producing tumor=5, pseudocyst=1, and lymphangioma=1). We estimated existence of peak of in vivo MRS, and in vitro MRS concordant to that of NMR. We also evaluated differential peak for predicting specific disease. Results : Correlation of presence of peak with NMR showed showed sensitivity of 29.6%, specificity of 82.6% and accuracy of 67.7% on in vivo MRS (p = 0.096, McNemar test), sensitivity of 57.1% and specificity of 92.6% and accuracy of 82.3% on in vitro MRS (p = 0.362, McNemar test). The spectra of NMR for IPMT showed more frequent peaks at 3.5-4.0 ppm (p=0.026). Conclusion : Although chemical analysis, using NMR could be regarded as possible tool to differentiate cystic masses, in vivo and in vitro MRS need further technical evolution for clinical application.

  • PDF

NMR analysis of organic ligands on quantum-dots

  • Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.2
    • /
    • pp.51-55
    • /
    • 2019
  • Quantum dot (QD) is an emerging novel nanomaterial that has wide applicability and superior functionality with relatively low cost. Nuclear magnetic resonance (NMR) spectroscopy has been contributed to elucidate various features of QDs and to improve their overall performance. In particular, NMR spectroscopy becomes an essential analytical tool to monitor and analyze organic ligands on the QD surface. In the present mini-review, application of NMR spectroscopy as a superb methodology to appreciate organic ligands is discussed. In addition, it was recently noted that ligands exert rather greater influence on diverse features of QDs than our initial anticipation, for which contribution of NMR spectroscopy is briefly reviewed.

Nanoscale-NMR with Nitrogen Vacancy center spins in diamond

  • Lee, Junghyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.2
    • /
    • pp.59-65
    • /
    • 2020
  • Nitrogen-Vacancy (NV) center in diamond has been an emerging versatile tool for quantum sensing applications. Amongst various applications, nano-scale nuclear magnetic resonance (NMR) using a single or ensemble NV centers has demonstrated promising results, opening possibility of a single molecule NMR for its chemical structural studies or multi-nuclear spin spectroscopy for quantum information science. However, there is a key challenge, which limited the spectral resolution of NMR detection using NV centers; the interrogation duration for NV-NMR detection technique has been limited by the NV sensor spin lifetime (T1 ~ 3ms), which is orders of magnitude shorter than the coherence times of nuclear spins in bulk liquid samples (T2 ~ 1s) or intrinsic 13C nuclear spins in diamond. Recent studies have shown that quantum memory technique or synchronized readout detection technique can further narrow down the spectral linewidth of NMR signal. In this short review paper, we overview basic concepts of nanoscale NMR using NV centers, and introduce further developments in high spectral resolution NV NMR studies.

Structural Studies of Hydrotalcite Compounds Calcined with Different Temperatures by $^{27}Al$ Solid-state NMR Spectroscopy

  • Park, Tae-Joon;Kim, Yong-Ae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • Several hydrotalcite compounds calcined with different temperature for applications in a chlorine resistant textile were prepared, and its structural changes in dependence on the temperature were studied by using $^{27}Al$ solid-state nuclear magnetic resonance(NMR) spectroscopy. We found that the Al coordination was partly lowered from octahedral to tetrahedral site as the calcined temperature goes up. And we also investigated the hydrotalcite-treated textile for chlorine resistance by using $^{27}Al$ solid-state NMR spectroscopy.

  • PDF

NOISE Spectroscopy: Applications to Solid State NMR

  • Yang, Doo-Kyung;Zax, D.B.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.2
    • /
    • pp.142-154
    • /
    • 2002
  • One of the oldest, still unsolved, and often ignored problems in magnetic resonance remains the issue of how to observe undistorted, normal one-dimensional spectra where the frequencies and their relative intensities represent faithfully the distribution of spins and sites in the sample within the magnet. Often distortions in these parameters are accepted, as the price of sensitivity enhancement, or because it is unclear just how these distortions might be avoided. Surprisingly enough, the problem is exacerbated by the use of modern techniques of pulsed Fourier transform NMR. Noise spectroscopy is an approach to solving the problem of distorted NMR spectra, which is largely under appreciated; it promises virtually "unlimited" distortionless bandwidths without costly hardware investments. Nonetheless, its exploitation remains limited. We will discuss why noise spectroscopy belongs in the arsenal of tricks spectroscopists should be aware of, show examples where its use is essential if accurate, quantitative NMR is to be expected, and discuss some recent approaches which extend its applicability yet further, particularly in solid state NMR and in applications to quadrupolar nuclear spins.

  • PDF

Design and simulation of a rectangular planar printed circuit board coil for nuclear magnetic resonance, radio frequency energy harvesting, and wireless power transfer devices

  • Mostafa Noohi;Adel Pourmand;Habib Badri Ghavifekr;Ali Mirvakili
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.581-594
    • /
    • 2024
  • In this study, a planar printed circuit board (PCB) coil with FR4 substrate was designed and simulated using the finite element method, and the results were analyzed in the frequency domain. This coil can be used in wireless power transfer (WPT) as a transmitter or receiver, eliminating wires. It can also be used as the receiver in radio frequency energy-harvesting (RF-EH) systems by optimizing the planar PCB coil to convert radio-wave energy into electricity, and it can be employed as an excitation (transmitter) or receiver coil in nuclear magnetic resonance (NMR) spectroscopy. This PCB coil can replace the conventional coil, yielding a reduced occupied volume, a fine-tuned design, reduced weight, and increased efficiency. Based on the calculated gain, power, and electromagnetic and electric field results, this planar PCB coil can be implemented in WPT, NMR spectroscopy, and RF-EH devices with minor changes. In applications such as NMR spectroscopy, it can be used as a transceiver planar PCB coil. In this design, at frequencies of 915 MHz and 40 MHz with 5 mm between coils, we received powers of 287.3 μW and 480 μW, respectively, which are suitable for an NMR coil or RF-EH system.

In-cell nuclear magnetic resonance spectroscopy for studying intermolecular interactions

  • Sugiki, Toshihiko;Lin, Yuxi;Lee, Young-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • Studies on the interactions of proteins with partner molecules at the atomic resolution are essential for understanding the biological function of proteins in cells and for developing drug molecules. Solution NMR spectroscopy has shown remarkably useful capability for investigating properties on the weak to strong intermolecular interactions in both diluted and crowded solution such as cell lysates. Of note, the state-of-the-art in-cell NMR method has made it possible to obtain atomistic information on natures of intermolecular interactions between target proteins with partner molecules in living cells. In this mini-review, we comprehensively describe the several technological advances and developments in the in-cell NMR spectroscopy.

Use of Nuclear Magnetic Resonance Spectroscopy in Analysis of Fennel Essential Oil

  • AbouZid, Sameh
    • Natural Product Sciences
    • /
    • v.22 no.1
    • /
    • pp.30-34
    • /
    • 2016
  • A simple and rapid method based on proton nuclear magnetic resonance spectroscopy was developed for determination of trans-anethole content in fennel essential oil. Spectra of pure trans-anethole, of the pure essential oil of fennel, and of the pure oil of fennel with thymol internal standard were recorded. The signal of $H-1^/$ was used for quantification of trans-anethole. This proton signal is well separated in the proton magnetic resonance spectrum of the compound. No reference compound is needed and cheap internal standard was used. The results obtained from spectroscopic analysis were compared with those obtained by gas chromatography. Additionally, the developed method was used for determination of the type of vegetable oil used as a carrier in commercial products, which cannot be quantified as such by gas chromatography. This study demonstrates the application of proton nuclear magnetic resonance spectroscopy as a quality control method for estimation of essential oil components.

Hard Tissue Analysis of NMR after Fluoride Administration

  • Kim, Hye-Young;Nam, Seoul-Hee;Han, Man-Seok
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.599-602
    • /
    • 2016
  • Fluoride (F) is an important element for the mineralization of body tissues. The purpose of this study was to administer fluoride prenatally to rats to evaluate its beneficial concentration for rat bone using microstructural analysis, to analyze its effect on the bone structure, and to evaluate the effect of its transfer through rat placenta. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectrometry (NMR) were performed. The $^{19}F$ NMR and $^{31}P$ NMR signals suggested the existence of fluoride ions in the apatite lattice because the signals were caused by the fluoride ions that were coupled to the phosphate atoms and were affected in the phosphate phases other than the element phases in the apatite. Consequently, if it was not affected too much, the desirable concentration of prenatal fluoride treatment could have a helpful effect on the bone crystal structure through placental fluoride transfer.