• Title/Summary/Keyword: Nuclear factor-kappa B (NF-${\kappa}$B)

Search Result 814, Processing Time 0.028 seconds

Anti-inflammatory effect of Porphyra yezoensis ethanol extract through the inhibited NF-κB and JNK activation in LPS-PG stimulated HGF-1 cells (사람 치은섬유모세포에서 NF-κB와 JNK 활성 억제를 통한 돌김 에탄올 추출물의 항염증 효과)

  • Park, Chung-Mu;Yoon, Hyun-Seo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.81-88
    • /
    • 2018
  • Human gingival fibroblast (HGF) is the main cell type existed in periodontium and produces a variety of inflammatory mediators by external stimuli. In this study, the anti-inflammatory activity of Porphyra yezoensis ethanol extract (PYEE) on LPS-PG lipopolysaccharide from Porphyromonas gingivalis activated HGF-1 cell. Up-regulated iNOS and COX-2 expressions by LPS-PG were significantly attenuated by PYEE treatment in a dose-dependent manner. In addition, activated nuclear factor $(NF)-{\kappa}B$ was also dose-dependently inhibited by PYEE treatment. Among upstream signaling molecules, PYEE treatment inhibited phosphorylation of c-Jun $NH_2$-terminal kinase (JNK) but did not give any effect on other molecules. On the other hand, one of phase II enzymes, NAD(P)H:quinone dehydrogenase (NQO)-1, was analyzed due to its anti-inflammatory activity, which was upregulated by PYEE treatment. Consequently, PYEE could be candidates for the prevention and treatment of periodontal diseases.

Evaluating the Role of Curcum Powder as a Protective Factor against Bladder Cancer - An Experimental Study

  • El-Mesallamy, Hala;Salman, Tarek M.;Ashmawey, Abeer M.;Osama, Nada
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5287-5290
    • /
    • 2012
  • Throughout human history, plant products have been used for many purposes including as medicines. Herbal products and spices can be used as preventive agents against cancer due to their antimicrobial, antioxidant and antitumorigenic properties. This study was designed to evaluate the potential protective effect of curcum in rats administered nitrosamine precursors; dibutylamine (DBA) and sodium nitrate (NaNO3); and infected with Escherichia coli (E. coli) and also to monitor changes in nuclear factor the Kappa B p65 (NF-${\kappa}B$ p56) pathway and its downstream products, Bcl-2 and interleukin-6 (IL-6), in parallel with nitrosamine precursors, E. coli and curcum treatment. Rats were divided into three groups (n=25 each; except of control group, n+20). Group I a normal control group, group II administered DBA/NaNO3 in drinking water and infected with E. coli and group III was administered DBA/NaNO3 in drinking water, infected with E. coli and receiving standard diet containing 1% curcum powder. Histopathological examination reflected that the curcum treated group featured a lower incidence of urinary bladder lesions, and lower levels of NF-${\kappa}B$, Bcl-2 and IL-6, than the group receiving nitrosamine precursor and infected with E. coli. These findings suggested that curcum may have a protective role during the process of bladder carcinogenesis by inhibiting the NF-${\kappa}B$ pathway and its downstream products.

Heparin Attenuates the Expression of TNF $\alpha$-induced Cerebral Endothelial Cell Adhesion Molecule

  • Lee, Jeong-Ho;Kim, Chul-Hoon;Seo, Gi-Ho;Lee, Jin-U;Kim, Joo-Hee;Kim, Dong-Goo;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.231-236
    • /
    • 2008
  • Heparin is a well-known anticoagulant widely used in various clinical settings. Interestingly, recent studies have indicated that heparin also has anti-inflammatory effects on neuroinflammation-related diseases, such as Alzheimer's disease and meningitis. However, the underlying mechanism of its actions remains unclear. In the present study, we examined the anti-inflammatory mechanism of heparin in cultured cerebral endothelial cells (CECs), and found that heparin inhibited the tumor necrosis factor $\alpha$ ($TNF{\alpha}$)-induced and nuclear factor kappa B (NF-${\kappa}B$)-dependent expression of adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), which are crucial for inflammatory responses. Heparin selectively interfered with NF-${\kappa}B$ DNA-binding activity in the nucleus, which is stimulated by $TNF{\alpha}$. In addition, non-anticoagulant 2,3-O desulfated heparin (ODS) prevented NF-${\kappa}B$ activation by $TNF{\alpha}$, suggesting that the anti-inflammatory mechanism of heparin action in CECs lies in heparin's ability to inhibit the expression of cell adhesion molecules, as opposed to its anticoagulant actions.

Anti-inflammatory effects of Nelumbo leaf extracts and identification of their metabolites

  • Park, Eunkyo;Kim, Gyoung Deuck;Go, Min-Sun;Kwon, Dodan;Jung, In-Kyung;Auh, Joong Hyuck;Kim, Jung-Hyun
    • Nutrition Research and Practice
    • /
    • v.11 no.4
    • /
    • pp.265-274
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Nelumbo leaves have been used in traditional medicine to treat bleeding, gastritis, hemorrhoids, and halitosis. However, their mechanisms have not been elucidated. MATERIALS/METHODS: The present study prepared two Nelumbo leaf extracts (NLEs) using water or 50% ethanol. Inflammatory response was induced with LPS treatment, and expression of pro-inflammatory mediators (inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin (IL)-$1{\beta}$, and IL-6 and nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions were assessed. To determine the anti-inflammatory mechanism of NLEs, we measured nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity. Major metabolites of NLEs were also analyzed and quantified. RESULTS: NLEs effectively reduced the expression and productions of pro-inflammatory mediators such as IL-$1{\beta}$, IL-6, TNF-${\alpha}$, $PGE_2$, and NO. NLEs also reduced NF-${\kappa}B$ activity by inhibiting inhibitor of NF-${\kappa}B$ phosphorylation. Both extracts contained catechin and quercetin, bioactive compounds of NLEs. CONCLUSIONS: In this study, we showed that NLEs could be used to inhibit NF-${\kappa}B$-mediated inflammatory responses. In addition, our data support the idea that NLEs can ameliorate disease conditions involving chronic inflammation.

Aqueous extract of Lycii fructus suppresses inflammation through the inhibition of nuclear factor kappa B signal pathway in murine raw 264.7 macrophages

  • Kim, Beum-Seuk;Lim, Hyung-Ho;Song, Yun-Kyung;Sung, Yun-Hee;Kim, Sung-Eun;Chang, Hyun-Kyung;Shin, Mal-Soon;Kim, Chang-Ju;Lee, Hye-Jung;Kim, Dong-Hee
    • Advances in Traditional Medicine
    • /
    • v.10 no.3
    • /
    • pp.155-164
    • /
    • 2010
  • Lycii fructus is the fruit of Lycium chinense Miller and is part of the Solanaceae family. Lycii fructus produces various effects such as hypotensive, hypoglycemic, anti-pyretic, and anti-stress activities. Lycii fructus is known to contain betaine, carotene, nicotinic acid, zeaxanthin, and cerebroside. In the present study, the effects of Lycii fructus aqueous extract on lipopolysaccharide (LPS)-induced inflammation in murine raw 264.7 macrophage cells were investigated. In this study we utilized the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcriptionpolymerase chain reaction (RT-PCR), Western blotting, and nitric oxide (NO) detection. Lycii fructus aqueous extract suppressed NO production by inhibiting the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-$\alpha$) mRNA and iNOS protein in murine raw 264.7 macrophage cells. Also, Lycii fructus aqueous extract suppressed the activation of nuclear factor-kappa B (NF-${\kappa}B$) in the nucleus. These results demonstrated that Lycii fructus aqueous extract causes an anti-inflammatory effect that was likely produced by the suppression of iNOS expression through the down-regulation of NF-$\hat{e}B$ binding activity.

The Anti-inflammatory Mechanism of Pu-erh Tea via Suppression the Activation of NF-κB/HIF-1α in LPS-stimulated RAW264.7 Cells

  • Su-Jin Kim
    • Biomedical Science Letters
    • /
    • v.29 no.2
    • /
    • pp.58-65
    • /
    • 2023
  • Pu-erh tea, a popular and traditional Chinese tea, possesses various health-promoting effects, including inhibiting tumor cell progression and preventing type II diabetes and neurodegenerative disorders. However, the precise anti-inflammatory mechanisms are not well understood. In present study, we elucidated the anti-inflammatory mechanism of Pu-erh tea in lipopolysaccharide (LPS)-activated RAW264.7 cells. We explored the effects of Pu-erh tea on the levels of inflammatory-related genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) in LPS-activated RAW264.7 cells. Moreover, we investigated its regulatory effects on nuclear factor-kappa B (NF)-κB and hypoxia-inducible-factor (HIF)-1α activation. The findings of this study demonstrated that Pu-erh tea inhibited the LPS-increased inflammatory cytokines and PGE2 release, as well as COX-2 and iNOS expression. Moreover, we confirmed that the anti-inflammatory mechanism of Pu-erh tea occurs via the inhibition of NF-κB and HIF-1α activation. Conclusively, these findings provide experimental evidence that Pu-erh tea may be useful candidate in the treatment of inflammatory-related diseases.

Quercetin Ameliorates NO Production via Down-regulation of iNOS Expression, $NF{\kappa}B$ Activation and Oxidative Stress in LPS-Stimulated Macrophages

  • Cho, Hye-Yeon;Park, Ji-Young;Kim, Jong-Kyung;Noh, Kyung-Hee;Moon, Gap-Soon;Kim, Jung-In;Song, Young-Sun
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.200-206
    • /
    • 2005
  • Effect of quercetin on NO production and regulation mode of quercetin on oxidative stress, $NF{\kappa}B$ activation, and iNOS expression, possible mechanisms of NO suppression in LPS-stimulated macrophages were investigated. Treatment of RAW 264.7 cells with quercetin significantly reduced lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production dose-dependently ($IC_{50}$, $9.2\;{\mu}M$). Expression of iNOS and specific DNA binding activities of nuclear factor kB ($NF{\kappa}B$) were significantly suppressed by quercetin pretreatment. Quercetin reduced thiobarbituric acid-reactive substances (TBARS) accumulation, enhancing GSH level and antioxidant activities of enzymes, such as superoxide dismutase (SOD) and catalase. These results demonstrate quercetin may ameliorate inflammatory diseases by suppressing NO production through inhibition of iNOS expression, $NF{\kappa}B$ transactivation, and oxidative stress, which may be mediated partially by antioxidative effect of quercetin. Thus, quercetin appears to be used as a potential therapeutic agent for treating LPS-induced inflammatory processes.

Leaves of Raphanus sativus L. Shows Anti-Inflammatory Activity in LPS-Stimulated Macrophages via Suppression of COX-2 and iNOS Expression.

  • Park, Hye-Jin;Song, Minjung
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.50-55
    • /
    • 2017
  • Raphanus sativus L. (RS) is a cruciferous vegetable that is widely consumed in Korea. The anticancer activity of leaves of RS (RSL) extract has been investigated; however, no studies focused on its anti-inflammatory effects. Therefore, the aim of the current study was to evaluate the anti-inflammatory effects of RSL extract. In brief, RSL powder was fractionated into n-hexane, chloroform, ethyl acetate, n-butanol, and water-soluble fractions. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were treated with each fraction for initial screening. It was found that the chloroform fraction significantly inhibited nitric oxide release in LPS-stimulated RAW264.7 cells with a half maximal inhibitory concentration value of $196{\mu}g/mL$. In addition, the mRNA and protein expression levels of inducible nitric oxide synthase, measured using reverse transcriptase-polymerase chain reaction and western blotting, respectively, were reduced in a concentration-dependent manner. Moreover, the inflammatory cyclooxygenase-2 enzyme expression decreased. Furthermore, the expression of nuclear factor-kappa B ($NF-{\kappa}B$), the key regulator of the transcriptional activation of the inflammatory cytokine genes, was reduced by the RSL chloroform fraction. Therefore, the results of our study suggest that RSL exhibits anti-inflammatory effects in LPS-stimulated macrophages via $NF-{\kappa}B$ inactivation.

NSA9, a human prothrombin kringle-2-derived peptide, acts as an inhibitor of kringle-2-induced activation in EOC2 microglia

  • Kim, Ji-Yeon;Kim, Tae-Hyong;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.380-386
    • /
    • 2009
  • In neurodegenerative diseases, such as Alzheimer' and Parkinson', microglial cell activation is thought to contribute to CNS injury by producing neurotoxic compounds. Prothrombin and kringle-2 increase levels of NO and the mRNA expression of iNOS, IL-1$\beta$, and TNF-$\alpha$ in microglial cells. In contrast, the human prothrombin kringle-2 derived peptide NSA9 inhibits NO release and the production of pro-inflammatory cytokines such as IL-1$\beta$, TNF-$\alpha$, and IL-6 in LPS-activated EOC2 microglia. In this study, we investigated the anti-inflammatory effects of NSA9 in human prothrombin- and kringle-2-stimulated EOC2 microglia. Treatment with 20-100 ${\mu}M$ of NSA9 attenuated both prothrombin- and kringle-2-induced microglial activation. NO production induced by MAPKs and NF-$\kappa$B was similarly reduced by inhibitors of ERK (PD98059), p38 (SB203580), NF-$\kappa$B (N-acetylcysteine), and NSA9. These results suggest that NSA9 acts independently as an inhibitor of microglial activation and that its effects in EOC2 microglia are not influenced by the presence of kringle-2.

Anti-Inflammatory Effect of Chondrus nipponicus Yendo Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells (LPS로 유도된 RAW 264.7 세포에 대한 가락진두발 에탄올 추출물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Yong;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Jang, Mi-Ran;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.194-201
    • /
    • 2016
  • The anti-inflammatory activity of ethanol extract from Chondrus nipponicus Yendo (CNYEE) was investigated by measuring production of a lipopolysaccharide-induced inflammatory response mediator. CNYEE had no cytotoxic effects on proliferation of macrophages compared to the control. CNYEE significantly inhibited (over 50%) NO production at $50{\mu}g/mL$, with inhibitory effects on expression levels of cytokines such as interleukin (IL)-6, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and IL-$1{\beta}$. In particular, IL-6 inhibitory activity of CNYEE was higher than 70% at $100{\mu}g/mL$. CNYEE also reduced protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor (NF)-${\kappa}B$ in a dose-dependent manner. CNYEE also significantly reduced phosphorylation of p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Therefore, these results suggest that CNYEE may have anti-inflammatory effects by modulating the NF-${\kappa}B$ and mitogen-activated protein kinases signaling pathways and may be used as an anti-inflammatory therapeutic material.