DOI QR코드

DOI QR Code

Anti-inflammatory effect of Porphyra yezoensis ethanol extract through the inhibited NF-κB and JNK activation in LPS-PG stimulated HGF-1 cells

사람 치은섬유모세포에서 NF-κB와 JNK 활성 억제를 통한 돌김 에탄올 추출물의 항염증 효과

  • Received : 2018.09.11
  • Accepted : 2018.12.20
  • Published : 2018.12.28

Abstract

Human gingival fibroblast (HGF) is the main cell type existed in periodontium and produces a variety of inflammatory mediators by external stimuli. In this study, the anti-inflammatory activity of Porphyra yezoensis ethanol extract (PYEE) on LPS-PG lipopolysaccharide from Porphyromonas gingivalis activated HGF-1 cell. Up-regulated iNOS and COX-2 expressions by LPS-PG were significantly attenuated by PYEE treatment in a dose-dependent manner. In addition, activated nuclear factor $(NF)-{\kappa}B$ was also dose-dependently inhibited by PYEE treatment. Among upstream signaling molecules, PYEE treatment inhibited phosphorylation of c-Jun $NH_2$-terminal kinase (JNK) but did not give any effect on other molecules. On the other hand, one of phase II enzymes, NAD(P)H:quinone dehydrogenase (NQO)-1, was analyzed due to its anti-inflammatory activity, which was upregulated by PYEE treatment. Consequently, PYEE could be candidates for the prevention and treatment of periodontal diseases.

사람치은섬유모세포(human gingival fibroblast, HGF)는 치은조직에 존재하는 주요한 세포의 형태 중 하나로 외부 자극에 반응하여 다양한 염증대사물질을 생산한다. 본 연구에서는 돌김에탄올추출물(PYEE)이 Porphyromonas gingivalis로부터 분리한 lipopolysaccharide로 염증이 유도된 HGF-1 cell에서 항염 효과를 보이는지 분석하고자 하였다. LPS-PG에 의해 과발현된 iNOS와 COX-2는 PYEE의 처리에 의해 농도 의존적으로 발현이 감소되었고, nuclear factor $(NF)-{\kappa}B$ 또한 동일한 양상으로 활성이 억제되었다. 신호전달물질 중 c-Jun $NH_2$-terminal kinase (JNK)의 인산화만이 PYEE에 의해 억제되었다. 그리고 항염 작용에 관여하는 것으로 알려진 2상 효소 중 하나인 NAD(P)H:quinone dehydrogenase (NQO)-1도 분석하였고, 이 효소는 PYEE의 처리에 의해 강하게 발현이 유도가 되었다. 결론적으로 돌김에탄올추출물은 치주질환 에방과 치료를 위한 후보물질로 활용 가능할 것으로 사료된다.

Keywords

OHHGBW_2018_v9n12_81_f0001.png 이미지

Fig. 1. PYEE inhibited protein expression levels of iNOS and COX-2 in LPS-PG stimulated HGF-1 cells. Panel A shows protein expression levels of iNOS and COX-2 by PYEE treatment. All signals were normalized to protein levels of actin, an internal control, and expressed as a ratio (Panel B). Data represent the mean±SD of triplicate experiments. Values sharing the same superscript are not significantly different at p<0.05 by Duncan’s multiple range test.

OHHGBW_2018_v9n12_81_f0002.png 이미지

Fig. 2. LPPYSE-EP Gin hisbtiitmeud laptheods pHhoGrFy-la1ti onc eollfs . NFPa-nκeBl iAn PshYoEwEs. Apllh ossipghnoalrsy lawteerde nsotramtuasl izeodf top 6p5ro tebiyn elexvperless seodf aacst in,a arna tioin te(rnPaaln elc onBtr)o. l, Daantda erexppreersimenetn ts. theV alumees an±sShDar ing of thet riplsicaamtee psu

OHHGBW_2018_v9n12_81_f0003.png 이미지

Fig. 3. LPPYSE-EP Gin hsibtiimteudl atpehdo sHphGoFr-yl1a ticoenl lso.f PJaNnKel iAn JsNhoKw sa npdh ops3ph8o rbyyla tiPoYn EEle.v eAlsl l osf igAnaklts, EwReKre, innotremrnaalilz ecdo nttroo l,p raontedi n exlperveeslss edo f asa ctai n,r ataion t(rPipalniecal teB ).e xDpaetrai mreenptrse.s enVta luthees msehaanri±ngS D thoef dsaifmfeer ents upaet rspc

OHHGBW_2018_v9n12_81_f0004.png 이미지

Fig. 4. PYEE induced protein expression level of NQO-1 in LPS-PG stimulated HGF-1 cells. Panel A shows protein expression levels of NQO-1 by PYEE treatment. All signals were normalized to protein levels of actin, an internal control, and expressed as a ratio (Panel B). Data represent the mean±SD of triplicate experiments. Values sharing the same superscript are not significantly different at p<0.05 by Duncan’s multiple range test.

References

  1. T. Lawrence, D.A. Willoughby & D.W. Gilroy. (2002). Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol, 2(10), 787-795. DOI : 10.1038/nri915
  2. J.K. Kundu & Y.J. Surh. (2008). Inflammation: gearing the journey to cancer. Mutat Res, 659(1-2), 15-30. DOI : 10.1016/j.mrrev.2008.03.002
  3. Y.J. Surh. (2003). Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer, 3(10), 768-780. DOI : 10.1038/nrc1189
  4. G.C. Armitage. (1999). Development of a classification system for periodontal diseases and conditions. Ann Periodontol, 4(1), 1-6. DOI : 10.1902/annals.1999.4.1.1
  5. G. Hajishengallis & R.J. Lamont. (2014). Breaking bad: manipulation of the host response by porphyromonas gingivalis. Eur J Immunol, 44(2), 328-338. DOI : 10.1002/eji.201344202
  6. P.K. Sreenivasan & A. Gaffar. (2008). Antibacterials as anti-inflammatory agents. Dual action agents for oral health. Antonie Van Leeuwenhoek, 93(3), 227-239. DOI : 10.1007/s10482-007-9197-8
  7. D. Noda, T. Hamachi, K. Inoue & K. Maeda. (2007). Relationship between the presence of periodontopathic bacteria and the expressing of chemokine receptor mRNA in inflamed gingival tissue. J Periodontal Res, 42(6), 566-571. DOI : 10.1111/j.1600-0765.2007.00984.x
  8. D.T. Graves, M. Oskoui & S. Volejnikova. (2001). Tumor necrosis factor modulates fibroblast apoptosis, PMN recruitment, and osteoclast formation in response to P. gingivalis infection. J Dent Res, 80(10), 1875-1879. DOI : doi.org/10.1177/00220345010800100301
  9. L. Kocgozlu, R. Elkaim, H. Tenenbaum & S. Werner. (2009). Variable cell responses to P. gingivalis lipopolysaccharide. J Dent Res, 88(8), 741-745. DOI : 10.1177/0022034509341166
  10. Y.K. Han, I.S. Lee & S.I. Lee. (2017). JAK/STAT pathway modulates on Porphyromonas gingivalis lipopolysaccharide- and nicotine-induced inflammation in osteoblasts. J Dent Hyg Sci, 17(1), 81-86. DOI : 10.17135/jdhs.2017.17.1.81
  11. G.J. Seymour & E. Gemmell. (2001). Cytokines in periodontal disease: where to from here?. Acta Odontologica, 59(3), 167-173. DOI : 10.1080/000163501750266765
  12. L. Li, W. Sun, T. Wu, R. Lu & B. Shi. (2017). Caffeic acid phenethyl ester attenuates lipopolysaccharidestimulated proinflammatory responses in human gingival fibroblasts via NF-${\kappa}B$ and PI3K/Akt signaling pathway. Eur J Pharmacol, 794(5), 61-68. DOI : 10.1016/j.ejphar.2016.11.003.
  13. D. Ross, J.K. Kepa, S.L. Winski, H.D. Beall, A. Anwar & D. Siegel. (2000). NAD(P)H: quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact, 129(1-2), 77-97. DOI : 10.1016/S0009-2797(00)00199-X
  14. M.N. Garcia-Casal, J. Ramirez, I. Leets, A.C. Pereira & M.F. Quiroga. (2009). Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects. Brit J Nut, 101(1), 79-85. DOI : 10.1017/s0007114508994757
  15. H. Funahashi, T. Imai, T. Mase, M. Sekiya, K. Yokoi, H. Hayashi, A. Shibata, T. Hayashi, M. Nishikawa, N. Suda, T. Hibi, Y. Mizuno, K. Tsukamura, A. Hayakawa & S. Tanuma. (2001). Seaweed prevents breast cancer?. Jpn J Cancer Res, 92(5), 483-487. DOI : 10.1111/j.1349-7006.2001.tb01119.x
  16. S.J. Oh, J.I. Kim, H.S. Kim, S,J. Son & E.O. Choe. (2013). Composition and antioxidant activity of dried laver. dolgim. Kor J Food Sci Technol, 45(4), 403-408, 2013. DOI : 10.9721/kjfst.2013.45.4.403
  17. E.S. Shin, H.J. Hwang, I.H. Kim & T.J. Nam. (2011) A glycoprotein from Porphyra yezoensis produces anti-inflammatory effects in liposaccharide-stimulated macrophages via the TLR4 signaling pathway. Int J Mol Med. 28(5), 809-815. DOI : 10.3892/ijmm.2011.729
  18. H.A. Lee, I.H. Kim & T.J. Nam. (2015) Bioactive peptide from Pyropia yezoensis and its anti-inflammatory activities. Int J Mol Med. 36(6), 1701-1706. DOI : 10.3892/ijmm.2015.2386
  19. S.K. Kim, K.E. Kook, C.H. Kim, J.K. Hwang. (2018). Inhibitory Effects of Curcuma xanthorrhiza Supercritical Extract and Xanthorrhizol on LPS-Induced Inflammation in HGF-1 Cells and RANKL-Induced Osteoclastogenesis in RAW264.7 Cells. J Microbiol. Biotechnol, 28(8) 1270-1281. DOI : 10.4014/jmb.1803.03045
  20. H.L. Yang, S.W. Lin, C.C. Lee, K.Y. Lin, C.H. Liao, T.Y. Yang, H.M. Wang, H.C. Huang, C.R. Wu & Y.C. Hseu. (2015). Induction of Nrf2-mediated genes by Antrodia salmonea inhibits ROS generation and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophages. Food Funct, 6(1) 230-241. DOI : 10.1039/c4fo00869c
  21. C. Nathan. (1992). Nitric oxide as a secretory product of mammalian cells. FASEB J, 6(12), 3051-3064. DOI : 10.1096/fasebj.6.12.1381691
  22. H.N. Lee, D.Y. Lim, S.S. Lim, J.D. Kim & J.H. Yoon. (2011). Anti-inflammatory effect of ethanol extract from Eupatorium japonicum. Kor Soc Food Sci Technol, 43(1), 65-71. DOI : 10.9721/kjfst.2011.43.1.065
  23. H.K. Na & Y.J. Surh. (2006). Intracellular signaling network as a prime chemopreventive target of (-)-epigallocatechin gallate. Mol Nutr Food Res, 50(2), 152-159. DOI : 10.1002/mnfr.200500154
  24. F. Daghigh, R.C. Borghaei, R.D. Thornton & J.H. Bee. (2002). Human gingival fibroblasts produce nitric oxide in response to proinflammatory cytokines. J Periodontol, 73(4), 392-400. DOI : 10.1902/jop.2002.73.4.392
  25. M. Holzhausen, C.J. Rossa, E.J. Marcantonio, P.O. Nassar, D.M. Spolidorio & L.C. Spolidorio. (2002). Effect of selective cyclooxygenase-2 inhibition on the development of ligature-induced periodontitis in rats. J Periodontol, 73(9), 1030-1036. DOI : 10.1902/jop.2002.73.9.1030
  26. M.J. Robinson & M.H. Cobb. (1997). Mitogen-activated protein kinase pathways. Curr Opin Cell Biol, 9(2), 180-186. DOI : 10.1016/S0955-0674(97)80061-0
  27. U. Hidding, K. Mielke, V. Waetzig, S. Brecht, U. Hanisch, A. Behrens, E. Wagner & T. Herdegen. (2002). The c-Jun N-terminal kinases in cerebral microglia: immunological functions in the brain. Biochem Pharmacol, 64(5-6), 781-788. DOI : 10.1016/s0006-2952(02)01139-5
  28. V. Waetzig, K. Czeloth, U. Hidding, K. Mielke, M. Kanzow, S. Brecht, M. Goetz, R. Lucius, T. Herdegen & U.K. Hanisch. (2005). c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia, 50(3), 235-246. DOI : 10.1002/glia.20173
  29. K.G. Lee, HI. Lee & H.S. Jeong. (2015). Cheogjogupye-tang has anti-oxidant potential through the activation of Nrf2. J Physiol & Pathol Korean Med, 29(2), 174-179. DOI : 10.15188/kjopp.2015.04.29.2.174
  30. C. Yang, C. Zhang, Z. Wang, Z. Tang, H. Kuang & A.N. Kong. (2016). Corynoline isolated from corydalis bungeana turcz. exhibits anti-inflammatory effects via modulation of Nfr2 and MAPKs. Molecules, 27(8), 1-15. DOI : 10.3390/molecules21080975