• Title/Summary/Keyword: Nuclear factor of activated T-cells

검색결과 101건 처리시간 0.024초

Actin-binding LIM protein 1 regulates receptor activator of NF-κB ligand-mediated osteoclast differentiation and motility

  • Jin, Su Hyun;Kim, Hyunsoo;Gu, Dong Ryun;Park, Keun Ha;Lee, Young Rae;Choi, Yongwon;Lee, Seoung Hoon
    • BMB Reports
    • /
    • 제51권7호
    • /
    • pp.356-361
    • /
    • 2018
  • Actin-binding LIM protein 1 (ABLIM1), a member of the LIM-domain protein family, mediates interactions between actin filaments and cytoplasmic targets. However, the role of ABLIM1 in osteoclast and bone metabolism has not been reported. In the present study, we investigated the role of ABLIM1 in the receptor activator of $NF-{\kappa}B$ ligand (RANKL)-mediated osteoclastogenesis. ABLIM1 expression was induced by RANKL treatment and knockdown of ABLIM1 by retrovirus infection containing Ablim1-specific short hairpin RNA (shAblim1) decreased mature osteoclast formation and bone resorption activity in a RANKL-dose dependent manner. Coincident with the downregulated expression of osteoclast differentiation marker genes, the expression levels of c-Fos and the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), critical transcription factors of osteoclastogenesis, were also decreased in shAblim1-infected osteoclasts during RANKL-mediated osteoclast differentiation. In addition, the motility of preosteoclast was reduced by ABLIM1 knockdown via modulation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/Rac1 signaling pathway, suggesting another regulatory mechanism of ABLIM1 in osteoclast formation. These data demonstrated that ABLIM1 is a positive regulator of RANKL-mediated osteoclast formation via the modulation of the differentiation and PI3K/Akt/Rac1-dependent motility.

Orobol, A Derivative of Genistein, Inhibits Heat-Killed Propionibacterium acnes-Induced Inflammation in HaCaT Keratinocytes

  • Oh, Yunsil;Hwang, Hwan Ju;Yang, Hee;Kim, Jong Hun;Yoon Park, Jung Han;Kim, Jong-Eun;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1379-1386
    • /
    • 2020
  • Acne is a chronic skin disease that typically occurs in the teens and twenties, and its symptoms vary according to age, sex, diet, and lifestyle. The condition is characterized by hyperproliferation of keratinocytes in the epidermis, sebum overproduction, excessive growth of Propionibacterium acnes, and P. acnes-induced skin inflammation. Interleukin (IL)-1α and IL-6 are predominant in the inflammatory lesions of acne vulgaris. These cytokines induce an inflammatory reaction in the skin in the presence of pathogens or stresses. Moreover, IL-1α accelerates the production of keratin 16, which is typically expressed in wounded or aberrant skin, leading to abnormalities in architecture and hyperkeratinization. Orobol (3',4',5,7-tetrahydroxyisoflavone) is a metabolite of genistein that inhibited the P. acnes-induced increases in IL-6 and IL-1α levels in human keratinocytes (HaCaTs) more effectively compared with salicylic acid. In addition, orobol decreased the IL-1α and IL-6 mRNA levels and inhibited the phosphorylation of inhibitor of kappa-B kinase, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, and mitogen-activated protein kinase induced by P. acnes. Finally, the expression of Ki67 was decreased by orobol. Thus, orobol ameliorated the inflammation and hyperkeratinization induced by heat-killed P. acnes and thus has potential for use in functional foods and cosmetics.

로스팅 서리태를 이용한 음료 제조 및 품질 평가 (Manufacture and Quality Evaluation of Beverage with prepared with Roasted Seoritae)

  • 정수옥;김혜연;한정순;김민주;강미숙;김애정
    • 한국식품영양학회지
    • /
    • 제29권4호
    • /
    • pp.557-564
    • /
    • 2016
  • This study was performed to develop and evaluate beverage prepared with optimally roasted seoritae to maximize the isoflavone content and antioxidant activities of the beverage. Isoflavone content was maximized at the roasting temperature of $110^{\circ}C$ for 20 min. Both DPPH radical scavenging activity and ABTS radical scavenging activity along with total polyphenol content were highest when seoritae was roasted at $110^{\circ}C$ for 20 min. Western blotting was used to determine the level of nuclear factor of activated T-cells 1(NFATc1) involved in controlling osteoclast differentiation. The results showed that NFATc1 had a concentration-dependent inhibitory effect when the RoS110 (roasted seoritae at $110^{\circ}C$ for 20 min) samples were processed at varying concentrations (10, 50, and $100{\mu}g/mL$). Tea samples were prepared from optimally roasted seoritae by varying brewing times (5~90 min) at $65^{\circ}C$, and tea brewed for 60 min had the highest preference with $65^{\circ}C$ as the preferred temperature for drinking.

보골지 추출물이 파골세포 분화 및 골흡수 관련 유전자 발현에 미치는 영향 (Psoraleae Semen Ethanol Extract Inhibits RANKL-Induced Osteoclast Differentiation and Osteoclast Specific Genes Expression)

  • 류광현;김엄지;김민선;김재현;이유진;진대환;손영주;정혁상
    • Korean Journal of Acupuncture
    • /
    • 제38권3호
    • /
    • pp.140-150
    • /
    • 2021
  • Objectives : The increase of osteoclasts could cause osteoporosis and bone-related diseases. Also, the inhibition of osteoclast differentiation is important in treating bone-related diseases. Traditionally, Psoraleae Semen has been used for geriatric diseases, aging and musculoskeletal diseases. The purpose of this study is to investigate the effect of Psoraleae Semen ethanol extract (PS) on osteoclast differentiation and its function. Methods : To confirm the effect of PS on osteoclastogenesis and bone resorption activity, various levels of concentrations of PS (5, 10, 20 and 40 ㎍/ml) were tested on RAW 264.7 cells cultured with RANKL. We measured tartarate-resistant acid phosphatase (TRAP)-positive cells, TRAP activity, pit formation and F-actin ring formation. The expressions of nuclear factor of activated T-cells (NFATc1) and c-Fos were confirmed through western blot and reverse transcription- polymerase chain reaction (RT-PCR). Also, the expression of bone resorption and fusion-related genes in osteoclast was confirmed by RT-PCR. Results : PS decreased the number of TRAP-positive cells and the TRAP activity. In addition, PS significantly inhibited the formation of pit and F-actin ring. Furthermore, PS decreased the expression of osteoclast related genes. Conclusions : PS inhibits osteoclast differentiation and bone resorption ability through inhibition of the expression of osteoclast-related genes. This indicates that PS may be a potential therapeutic agent to osteoporosis by suppressing osteoclastogenesis.

파골세포 분화에 미치는 노회(蘆會) 추출물의 효과 (Effect of Water Extract of Aloe in RANKL-induced Osteoclast Differentiation)

  • 이정휴;이명수;채수욱;김하영;문서영;전병훈;조해중
    • 동의생리병리학회지
    • /
    • 제25권6호
    • /
    • pp.1008-1013
    • /
    • 2011
  • Osteoporosis is the leading underlying cause of fractures, particularly in postmenopausal women, due to the loss of estrogen-mediated suppression of bone resorption. More than 50% of adults 50 years of age or older are estimated to have osteoporosis. Osteoclast which is main target for treatment of osteoporosis is originated from hematopoietic cell line. Aloe has been widely used in worldwide country as a coadjuvant medicine. Extracts of the leaves of Aloe have been used in condition to improve dermatologic problem such as seborrheic dermatitis, aphthous stomatitis, xerosis, lichen planus and has been known to exert anti-inflammatory, anti-oxidant and anti-tumor effects. However, despite the popularity of aloe as a plant food supplements, the evaluation of its efficacy as a possible therapeutic option for osteoporosis remains scarce. Thus, we evaluated the effect of Aloe on receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. Here we found that Aloe significantly inhibited osteoclast differentiation induced by RANKL. Aloe suppressed the activation of p38 pathway and $NF{\kappa}B$ in bone marrow macrophages (BMMs) treated with RANKL. Also, Aloe significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Aloe greatly inhibited the protein expression of c-fos and NFATc1. Taken together, our results suggested that Aloe may be useful tool for treatment of osteoporosis by inhibition of osteoclast differentiation.

백하수오(白何首烏) 물 추출물의 파골세포 분화에 미치는 영향 (Effect of Water Extract of Cynanchi Wilfordii Radix in RANKL-induced Osteoclast Differentiation)

  • 안용환;오재민;이명수;정종혁;채수욱;문서영;전병훈;최민규
    • 동의생리병리학회지
    • /
    • 제26권2호
    • /
    • pp.160-165
    • /
    • 2012
  • Osteoporotic fracture became a serious social problem, which related with mortality and morbidity in old age population. Osteoclast which is responsible for bone resorption is originated from hematopoietic cell line and plays a key role osteoporotic bone loss. Cynanchum wilfordii (Asclepiadaceae) roots have been used in Korean folk medicine for the treatment of diabetes mellitus and aging progression. Also, recent studies have shown that the extract and fractions of Cynanchi Wilfordii Radix have various pharmacological actions including scavenging free radicals, enhancing immunity, reducing high serum cholesterol, and anti-tumor activity. However, the effect of extract of Cynanchi Wilfordii Radix in osteoclast differentiation had not been reported. Thus, we evaluated the effect of Cynanchi Wilfordii Radix on receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. Through our study, we found that Cynanchi Wilfordii Radix significantly inhibited osteoclast differentiation induced by RANKL. Cynanchi Wilfordii Radix suppressed the activation of p38 pathway and $NF{\kappa}B$ in bone marrow macrophages (BMMs) treated with RANKL. Also, Cynanchi Wilfordii Radix significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Cynanchi Wilfordii Radix inhibited the protein expression of c-fos and NFATc1. Taken together, our results demonstrated that Cynanchi Wilfordii Radix may be useful treatment option of bone-related disease such as osteoporosis leads to fracture of bone and rheumatoid arthritis.

파골세포 분화에 복령 추출물이 미치는 영향 (Effect of Hoelen in RANKL-induced Osteoclast Differentiation)

  • 천윤희;곽성철;오재민;최민규;김정중;곽한복;이명수;전병훈;문서영
    • 동의생리병리학회지
    • /
    • 제26권3호
    • /
    • pp.320-324
    • /
    • 2012
  • Osteoporosis is an important public health issue in postmenopausal women. It is a major public health concern and is widely believed that osteoporosis results from imbalance between bone resorption and bone formation. Recently natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Hoelen (scientific name, Poria cocos) is a mushroom that is used in traditional Chinese medicine. Hoelen exhibits anti-inflammatory activity and has a protective effect on tumor progression. However, the effect of hoelen in osteoclast differentiation remains unknown. Thus, we examined the effect of hoelen in receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. Hoelen significantly inhibited RANKL-induced osteoclast differentiation in bone marrow-derived macrophages (BMMs) in dose dependent manner without toxicity. Also, we showed that hoelen significantly inhibited the mRNA expression of tartrate-resistant acid phophatase (TRAP) and nuclear factor of activated T cells 1 (NFATc1) in BMMs treated with RANKL. In Particular, hoelen greatly inhibited the protein expression of NFATc1. Ectopic expression of NFATc1 partially reverses hoelen-mediated inhibition of osteoclast differentiation. Taken together, our results demonstrated that hoelen may be useful treatment option of bone-related disease such as osteoporosis, reumatoid arthritis, and periodontitis.

Acer tegmentosum Maxim Prevents Bone Loss by Inhibiting Osteoclastogenesis and Promoting Osteoblast Mineralization in Ovariectomized Mice

  • Oh, Tae Woo;Park, Kwang-Il;Do, Hyun Ju;Kim, Kyungho;Yang, Hye Jin;Cho, Won Kyung;Ma, Jin Yeul
    • Natural Product Sciences
    • /
    • 제26권1호
    • /
    • pp.83-89
    • /
    • 2020
  • Osteoporosis is a worldwide disease leading to significant economic and societal burdens globally. Osteoporosis is caused by unbalanced bone remodeling between the rate of osteoclast bone resorption and osteoblast bone formation. Acer tegmentosum Maxim (AT) is a traditional herbal medicine containing multiple biological activities such as anti-oxidant and anti-inflammatory purposes. However, its role in osteoporosis has not been fully studied. Therefore, we investigated whether AT has a potent inhibitory effect on osteoporosis and its mechanism through a systemic evaluation in ovariectomized (OVX) mice. OVX mice were orally administrated with the AT at doses of 50, 100, and 200 mg/kg for 10 weeks. Histological images and histomorphometry analyses were performed by H&E and Toluidine blue satin, and the expression levels of receptor activator for nuclear factor-kB ligand (RANKL), nuclear factor of activated T cells cytoplasm 1 (NFATc1), c-Fos, and matrix metalloproteinase 9 (MMP9) related to the osteoclast differentiation were investigated using immunohistochemical analysis. Administration of AT prevented bone loss and the alternations of osteoporotic bone parameters at the distinct regions of the distal femur and spongiosa region in OVX mice. Further, administration of AT increased periosteal bone formation in a dose-dependent manner. Meanwhile, AT inhibited not only the expression of NFATc1 and c-Fos, which are two major regulators of osteoclastogenesis but also reduced bone resorbed encoding expression of MMP9 and RANKL. Our results indicated that administration of AT prevented bone loss and the alternations of osteoporotic bone parameters at the distinct regions of the distal femur and spongiosa region in OVX mice. Also AT has the bone protective effect through the suppression of osteoclast and promotion of osteoblast, suggesting that it could be a preventive and therapeutic candidate for anti-osteoporosis.

상기생 추출물이 파골세포 분화와 골흡수 억제에 미치는 효과 (Inhibition Effect of Taxilli Ramulus Extract on Osteoclast Differentiation and Bone Resorption)

  • 백종민;김주영;이명수;정우진;문서영;전병훈;오재민;최민규
    • 동의생리병리학회지
    • /
    • 제27권4호
    • /
    • pp.431-436
    • /
    • 2013
  • Bone homeostasis is maintained by co-ordination of bone-resorbing osteoclasts and bone-forming osteoblasts. Imbalance between osteoclasts and osteoblasts leads to many bone diseases such as osteoporosis, rheumatoid arthritis. Taxillus chinensis is a herb that has been widely used to improve bone health. However, the effect and mechanism of Taxillus chinensis extract on osteoclast differentiation and bone resportion has been unknown. Thus, We investigated the effect of Taxillus chinensis on expression of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation and bone resorption. Also, the action of Taxillus chinensis on mechanisms relating to osteoclast differentiation was studied. In this results, we identified that Taxillus chinensis significantly inhibited RANKL-induced osteoclast differentiation and bone resportion. Moreover, Taxillus chinensis was suppressed the activation of NF-${\kappa}B$ in bone marrow macrophage treated RANKL and M-CSF. Taxillus chinensis was down-regulated the mRNA expression of c-Fos, nuclear factor of activated T-cells (NFAT)c1, osteoclast-associated receptor (OSCAR), tartrate-resistant acid phosphatase (TRAP). The cell adhesion-related molecules such as integrin ${\alpha}v$ and integrin ${\beta}3$, and the filamentous actin (F-actin) rings of mature osteoclasts-related molecules such as dendritic cell-specific transmembrane preotein (DC-STAMP) and cathepsin K are also suppressed. Taken together, these results indicated that Taxillus chinensis will be a good candidate to treat osteoclast-mediated bone diseases.

Transcriptional regulation of chicken leukocyte cell-derived chemotaxin 2 in response to toll-like receptor 3 stimulation

  • Lee, Seokhyun;Lee, Ra Ham;Kim, Sung-Jo;Lee, Hak-Kyo;Na, Chong-Sam;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1942-1949
    • /
    • 2019
  • Objective: Leukocyte cell-derived chemotaxin 2 (LECT2) is associated with several physiological processes including inflammation, tumorigenesis, and natural killer T cell generation. Chicken LECT2 (chLECT2) gene was originally identified as one of the differentially expressed genes in chicken kidney tissue, where the chickens were fed with different calcium doses. In this study, the molecular characteristics and gene expression of chLECT2 were analyzed under the stimulation of toll-like receptor 3 (TLR3) ligand to understand the involvement of chLECT2 expression in chicken metabolic disorders. Methods: Amino acid sequence of LECT2 proteins from various species including fowl, fish, and mammal were retrieved from the Ensembl database and subjected to Insilco analyses. In addition, the time- and dose-dependent expression of chLECT2 was examined in DF-1 cells which were stimulated with polyinosinic:polycytidylic acid (poly [I:C]), a TLR3 ligand. Further, to explore the transcription factors required for the transcription of chLECT2, DF-1 cells were treated with poly (I:C) in the presence or absence of the nuclear factor ${\kappa}B$ ($NF{\kappa}B$) and activated protein 1 (AP-1) inhibitors. Results: The amino acid sequence prediction of chLECT2 protein revealed that along with duck LECT2 (duLECT2), it has unique signal peptide different from other vertebrate orthologs, and only chLECT2 and duLECT2 have an additional 157 and 161 amino acids on their carboxyl terminus, respectively. Phylogenetic analysis suggested that chLECT2 is evolved from a common ancestor along with the actinopterygii hence, more closely related than to the mammals. Our quantitative polymerase chain reaction results showed that, the expression of chLECT2 was up-regulated significantly in DF-1 cells under the stimulation of poly (I:C) (p<0.05). However, in the presence of $NF{\kappa}B$ or AP-1 inhibitors, the expression of chLECT2 is suppressed suggesting that both $NF{\kappa}B$ and AP-1 transcription factors are required for the induction of chLECT2 expression. Conclusion: The present results suggest that chLECT2 gene might be a target gene of TLR3 signaling. For the future, the expression pattern or molecular mechanism of chLECT2 under stimulation of other innate immune receptors shall be studied. The protein function of chLECT2 will be more clearly understood if further investigation about the mechanism of LECT2 in TLR pathways is conducted.