DOI QR코드

DOI QR Code

Acer tegmentosum Maxim Prevents Bone Loss by Inhibiting Osteoclastogenesis and Promoting Osteoblast Mineralization in Ovariectomized Mice

  • Oh, Tae Woo (Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)) ;
  • Park, Kwang-Il (Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)) ;
  • Do, Hyun Ju (Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)) ;
  • Kim, Kyungho (Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)) ;
  • Yang, Hye Jin (Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)) ;
  • Cho, Won Kyung (Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)) ;
  • Ma, Jin Yeul (Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM))
  • Received : 2019.12.05
  • Accepted : 2020.03.11
  • Published : 2020.03.31

Abstract

Osteoporosis is a worldwide disease leading to significant economic and societal burdens globally. Osteoporosis is caused by unbalanced bone remodeling between the rate of osteoclast bone resorption and osteoblast bone formation. Acer tegmentosum Maxim (AT) is a traditional herbal medicine containing multiple biological activities such as anti-oxidant and anti-inflammatory purposes. However, its role in osteoporosis has not been fully studied. Therefore, we investigated whether AT has a potent inhibitory effect on osteoporosis and its mechanism through a systemic evaluation in ovariectomized (OVX) mice. OVX mice were orally administrated with the AT at doses of 50, 100, and 200 mg/kg for 10 weeks. Histological images and histomorphometry analyses were performed by H&E and Toluidine blue satin, and the expression levels of receptor activator for nuclear factor-kB ligand (RANKL), nuclear factor of activated T cells cytoplasm 1 (NFATc1), c-Fos, and matrix metalloproteinase 9 (MMP9) related to the osteoclast differentiation were investigated using immunohistochemical analysis. Administration of AT prevented bone loss and the alternations of osteoporotic bone parameters at the distinct regions of the distal femur and spongiosa region in OVX mice. Further, administration of AT increased periosteal bone formation in a dose-dependent manner. Meanwhile, AT inhibited not only the expression of NFATc1 and c-Fos, which are two major regulators of osteoclastogenesis but also reduced bone resorbed encoding expression of MMP9 and RANKL. Our results indicated that administration of AT prevented bone loss and the alternations of osteoporotic bone parameters at the distinct regions of the distal femur and spongiosa region in OVX mice. Also AT has the bone protective effect through the suppression of osteoclast and promotion of osteoblast, suggesting that it could be a preventive and therapeutic candidate for anti-osteoporosis.

Keywords

References

  1. Morgan, E. F.; Unnikrisnan, G. U.; Hussein, A. I. Annu. Rev. Biomed. Eng. 2018, 20,119-143. https://doi.org/10.1146/annurev-bioeng-062117-121139
  2. Akkawi, I.; Zmerly, H. Joints 2018, 6,122-127. https://doi.org/10.1055/s-0038-1660790
  3. Kalaitzoglou, E.; Popescu, I.; Bunn, R. C.; Fowlkes, J. L.; Thrailkill, K. M. Curr. Osteoporos. Rep. 2016, 14, 310-319. https://doi.org/10.1007/s11914-016-0329-9
  4. Boyce, B. F.; Rosenberg, E.; de Papp, A. E.; Duong, L. T. Eur. J. Clin. Invest. 2012, 42,1332-1341. https://doi.org/10.1111/j.1365-2362.2012.02717.x
  5. Hernlund, E.; Svedbom, A.; Ivergard, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E. V.; Jonsson, B.; Kanis, J. A. Arch. Osteoporos. 2013, 8, 136. https://doi.org/10.1007/s11657-013-0136-1
  6. Minisola, S.; Cipriani, C.; Occhiuto, M.; Pepe, J. Intern. Emerg. Med. 2017, 12 , 915-921. https://doi.org/10.1007/s11739-017-1719-4
  7. Sarkar, M.; Bhardwaj, R.; Madabhavi, I.; Khatana, J. Clin. Med. Insights Circ. Respir. Pulm. Med. 2015, 9, 5-21. https://doi.org/10.4137/CCRPM.S22803
  8. Feng, X.; McDonald, J. M. Annu. Rev. Pathol. 2011, 6, 121-145. https://doi.org/10.1146/annurev-pathol-011110-130203
  9. Dunnewind, T.; Dvortsin, E. P.; Smeets, H. M.; Konijn, R. M.; Bos, J. H. J.; de Boer, P. T.; van den Bergh, J. P.; Postma, M. J. Value Health 2017, 20, 762-768. https://doi.org/10.1016/j.jval.2017.02.006
  10. Ensrud, K. E.; Crandall, C. J. Ann. Intern. Med. 2017, 167, ITC17-ITC32. https://doi.org/10.7326/AITC201708010
  11. Fukumoto, S.; Matsumoto, T. F1000Res. 2017. 6. 625. https://doi.org/10.12688/f1000research.10682.1
  12. Negishi-Koga, T.; Takayanagi, H. Immunol. Rev. 2009, 231, 241-256. https://doi.org/10.1111/j.1600-065X.2009.00821.x
  13. Tanaka, S.; Nakamura, K.; Takahasi, N.; Suda, T. Immunol. Rev. 2005, 208, 30-49. https://doi.org/10.1111/j.0105-2896.2005.00327.x
  14. Kong, Y. Y.; Yoshida, H.; Sarosi, I.; Tan, H. L.; Timms, E.; Capparelli, C.; Morony, S.; Oliveira-dos-Santos, A. J.; Van, G.; Itie, A.; Khoo, W.; Wakeham, A.; Dunstan, C. R.; Lacey, D. L.; Mak, T. W.; Boyle, W. J.; Penninger, J. M. Nature 1999, 397, 315-323. https://doi.org/10.1038/16852
  15. Lacey, D. L.; Timms, E.; Tan, H. L.; Kelley, M. J.; Dunstan, C. R.; Burgess, T.; Elliott, R.; Colombero, A.; Elliott, G.; Scully, S.; Hsu, H.; Sullivan, J.; Hawkins, N.; Davy, E.; Capparelli, C.; Eli, A.; Qian, Y. X.; Kaufman, S.; Sarosi, I.; Shalhoub, V.; Senaldi, G.; Guo, J.; Delaney, J.; Boyle, W.J. Cell 1998, 93, 165-176. https://doi.org/10.1016/S0092-8674(00)81569-X
  16. Yasuda, H.; Shima, N.; Nakagawa, N.; Yamaguchi, K.; Kinosaki, M.; Mochizuki S, Tomoyasu, A.; Yano, K.; Goto, M.; Murakami, A.; Tsuda, E.; Morinaga, T.; Higashio, K.; Udagawa, N.; Takahashi, N.; Suda, T. Proc. Natl. Acad. Sci. USA 1998, 95, 3597-3602. https://doi.org/10.1073/pnas.95.7.3597
  17. Gohda, J.; Akiyama, T.; Koga, T.; Takayanagi, H.; Tanaka, S.; Inoue, J. EMBO J. 2005, 24, 790-799. https://doi.org/10.1038/sj.emboj.7600564
  18. Matsuo, K.; Galson, D. L.; Zhao, C.; Peng, L.; Laplace, C.; Wang, K. Z.; Bachler, M. A.; Amano, H.; Aburatani, H.; Ishikawa, H.; Wagner, E. F. J. Biol. Chem. 2004, 279, 26475-26480. https://doi.org/10.1074/jbc.M313973200
  19. Rodan, G. A.; Martin, T. J. Science 2000, 289, 1508-1514. https://doi.org/10.1126/science.289.5484.1508
  20. Beral, V.; Million Women Study C. Lancet 2003, 362, 419-427. https://doi.org/10.1016/S0140-6736(03)14065-2
  21. Pinkerton, J. V.; Thomas, S. J. Steroid Biochem. Mol. Biol. 2014, 142, 142-154. https://doi.org/10.1016/j.jsbmb.2013.12.011
  22. Cappuzzo, K. A.; Delafuente, J. C. Ann. Pharmacother. 2004, 38, 294-302. https://doi.org/10.1345/aph.1D353
  23. An, J.; Yang, H.; Zhang, Q.; Liu, C.; Zhao, J.; Zhang, L.; Chen, B. Life Sci. 2016, 147, 46-58. https://doi.org/10.1016/j.lfs.2016.01.024
  24. Putnam, S. E.; Scutt, A. M.; Bicknell, K.; Priestley, C. M.; Williamson, E. M. Phytother. Res. 2007, 21, 99-112. https://doi.org/10.1002/ptr.2030
  25. Wang, T.; Liu, Q.; Tjhioe, W.; Zhao, J.; Lu, A.; Zhang, G.; Xiang, R.; Xu, J.; Feng, H. T. Curr. Drug Targets 2017, 18, 1051-1068.
  26. Wu, L.; Ling, Z.; Feng, X.; Mao, C.; Xu, Z. Curr. Top. Med. Chem. 2017, 17, 1670-1691. https://doi.org/10.2174/1568026617666161116141033
  27. Ebina, T. Gan To Kagaku Ryoho 2001, 28, 1515-1518.
  28. Shin, I. C.; Sa, J. H.; Shim, T. H.; Lee, J. H. J. Korean Soc. Appl. Biol. Chem. 2006, 49, 322-327.
  29. Seo, Y.; Bazarsad, D.; Choe, S. Y. J. Biomed. Res. 2012, 13,165-170. https://doi.org/10.12729/jbr.2012.13.2.165
  30. Tung, N. H.; Ding, Y.; Kim, S. K.; Bae, K.; Kim, Y. H. J. Agric. Food Chem. 2008, 56, 10510-10514. https://doi.org/10.1021/jf8020283
  31. Yu, T.; Lee, J.; Lee, Y. G.; Byeon, S. E.; Kim, M. H.; Sohn, E. H.; Lee, Y. J.; Lee, S. G. Cho, J.Y. J. Ethnopharmacology 2010, 128, 139-147. https://doi.org/10.1016/j.jep.2009.12.042
  32. Kim, E. C.; Kim, S. H.; Piao, S. J.; Kim, T. J.; Bae, K.; Kim, H. S.; Hong, S. S.; Lee, B. I.; Nam, M. J. Korean Med. Sci. 2015, 30, 979-987. https://doi.org/10.3346/jkms.2015.30.7.979
  33. Hong, B. K.; Eom, S. H.; Lee, C. O.; Lee, J. W.; Jeong, J. H.; Kim, J. K.; Cho, D. H.; Yu, C. Y.; Kwon, Y. S.; Kim,M. J. Korean J. Medicinal Crop Sci. 2007, 15, 296-303.
  34. Morikawa, T.; Tao, J.; Toguchida, I.; Matsuda, H.; Yoshikawa, M. J. Nat. Prod. 2003, 66, 86-91. https://doi.org/10.1021/np020351m
  35. Li, F.; Yang, X.; Yang, Y.; Guo, C.; Zhang, C.; Yang, Z.; Li, P. Phytomedicine 2013, 20, 549-557. https://doi.org/10.1016/j.phymed.2013.01.001
  36. Ley, C. J.; Lees, B.; Stevenson, J. C. Am. J. Clin. Nutr. 1992, 55, 950-954. https://doi.org/10.1093/ajcn/55.5.950
  37. Hwang, Y. H.; Park, H.; Ma, J. Y. J. Ethnopharmacol. 2013, 148, 99-105. https://doi.org/10.1016/j.jep.2013.03.074
  38. Wada, T.; Nakashima, T.; Hiroshi, N.; Penninger, J. M. Trends Mol. Med. 2006, 12, 17-25. https://doi.org/10.1016/j.molmed.2005.11.007
  39. Gu, J. H.; Tong, X. S.; Chen, G. H.; Liu, X. Z.; Bian, J. C.; Yuan, Y.; Liu, Z. P. J. Vet. Sci. 2014, 15, 133-140. https://doi.org/10.4142/jvs.2014.15.1.133
  40. Rios, M. H.; Sorsa, T.; Obregon, F.; Tervahartiala, T.; Valenzuela, M. A.; Pozo, P.; Dutzan, N.; Lesaffre, E.; Molas, M.; Gamonal, J. J. Clin. Periodontol. 2009, 36, 1011-1017. https://doi.org/10.1111/j.1600-051X.2009.01488.x
  41. Zhang, J. K.; Yang, L.; Meng, G. L.; Yuan, Z.; Fan, J.; Li, D.; Chen, J. Z.; Shi, T. Y.; Hu, H. M.; Wei, B. Y.; Luo, Z. J.; Liu, J. PLoS One 2013, 8, e57251. https://doi.org/10.1371/journal.pone.0057251
  42. Shi, T. Y.; Feng, S. F.; Xing, J. H.; Wu, Y. M.; Li, X. Q.; Zhang, N.; Tian, Z.; Liu, S. B.; Zhao, M. G. Neurotox. Res. 2012, 21, 358-367. https://doi.org/10.1007/s12640-011-9290-7
  43. Zhu, J.; Wan, X.; Zhu, Y.; Ma, X.; Zheng, Y.; Zhang, T. Drug Chem. Toxicol. 2010, 33, 220-226. https://doi.org/10.3109/01480540903373654