• Title/Summary/Keyword: Nuclear factor kappa B.

Search Result 1,032, Processing Time 0.039 seconds

Expression of Nuclear Factor Kappa B (NF-κB) as a Predictor of Poor Pathologic Response to Chemotherapy in Patients with Locally Advanced Breast Cancer

  • Prajoko, Yan Wisnu;Aryandono, Teguh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.595-598
    • /
    • 2014
  • Background: NF-${\kappa}B$ inhibits apoptosis through induction of antiapoptotic proteins and suppression of proapoptotic genes. Various chemotherapy agents induce NF-${\kappa}B$ translocation and target gene activation. We conducted the present study to assess the predictive value of NF-${\kappa}B$ regarding pathologic responses after receiving neoadjuvant chemotherapy. Materials and Methods: We enrolled 131 patients with locally advanced invasive ductal breast carcinoma. Immunohistochemistry (IHC) was used to detect NF-${\kappa}B$ expression. Evaluation of pathologic response was elaborated with the Ribero classification. Results: Expression of NF-${\kappa}B$ was significantly associated with poor pathological response (p=0.02). From the multivariate analysis, it was found that the positive expression of NF-${\kappa}B$ yielded RR=1.74 (95%CI 0.77 to 3.94). Conclusions: NF-${\kappa}B$ can be used as a predictor of poor pathological response after neoadjuvant chemotherapy.

Anti-Inflammatory Effects of Water Chestnut Extract on Cytokine Responses via Nuclear Factor-κB-signaling Pathway

  • Kim, Bora;Kim, Jin Eun;Choi, Byung-Kook;Kim, Hyun-Soo
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.90-97
    • /
    • 2015
  • Water chestnut (Trapa japonica Flerov.) is an annual aquatic plant. In the present study, we showed that the treatment of water chestnut extracted with boiling water resulted in a significant increase 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and decrease the intracellular $H_2O_2$-induced accumulation of reactive oxygen species. In addition, water chestnut extract (WCE) inhibited lipopolysaccharide (LPS)-induced nitric oxide production and suppressed mRNA and protein expression of the inducible nitric oxide synthase gene. The cytokine array results showed that WCE inhibited inflammatory cytokine secretion. Also, WCE reduced tumor necrosis factor-${\alpha}$- and interleukin-6-induced nuclear factor-${\kappa}B$ activity. Furthermore, during sodium lauryl sulfate (SLS)-induced irritation of human skin, WCE reduced SLS-induced skin erythema and improved barrier regeneration. These results indicate that WCE may be a promising topical anti-inflammatory agent.

TAK1-dependent Activation of AP-1 and c-Jun N-terminal Kinase by Receptor Activator of NF-κB

  • Lee, Soo-Woong;Han, Sang-In;Kim, Hong-Hee;Lee, Zang-Hee
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.371-376
    • /
    • 2002
  • The receptor activator of nuclear factor kappa B (RANK) is a member of the tumor necrosis factor (TNF) receptor superfamily. It plays a critical role in osteoclast differentiaion, lymph node organogenesis, and mammary gland development. The stimulation of RANK causes the activation of transcription factors NF-${\kappa}B$ and activator protein 1 (AP1), and the mitogen activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). In the signal transduction of RANK, the recruitment of the adaptor molecules, TNF receptor-associated factors (TRAFs), is and initial cytoplasmic event. Recently, the association of the MAPK kinase kinase, transforming growth factor-$\beta$-activated kinase 1 (TAK1), with TRAF6 was shown to mediate the IL-1 signaling to NF-${\kappa}B$ and JNK. We investigated whether or not TAK1 plays a role in RANK signaling. A dominant-negative form of TAK1 was discovered to abolish the RANK-induced activation of AP1 and JNK. The AP1 activation by TRAF2, TRAF5, and TRAF6 was also greatly suppressed by the dominant-negative TAK1. the inhibitory effect of the TAK1 mutant on RANK-and TRAF-induced NF-${\kappa}B$ activation was also observed, but less efficiently. Our findings indicate that TAK1 is involved in the MAPK cascade and NF-${\kappa}B$ pathway that is activated by RANK.

Sophora Flavescens Suppresses Degranulation and Pro-inflammatory Cytokines Production through the Inhibition of NF-${\kappa}B$ (p65) Activation in the RBL-2H3 cells

  • Lyu, Ji-Hyo;Park, Sang-Eun;Hong, Su-Hyun;Kim, Dong-Kyu;Ko, Woo-Shin;Hong, Sang-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.206-213
    • /
    • 2009
  • Sophora flavescens, as a traditional herbal medicine, has been used to treat with a variety of disesases, In previous reports, S. flavescens and sophoraflavanone G (a prenylated flavonoid from S. flavescens) inhibited cytokines productions in LPS-induced Raw 264.7 macrophages cells and BV2 microglial cells. We examined on the anti-allergic effect of S. flavescens on the PMA plus A23187-induced rat leukemia (RBL-2H3) cells. S. flavescens inhibited the release of $\beta$-hexosaminidase and productions and expressions of tumor necrosis factor (TNF)-$\alpha$, interleukin (IL)-4 and cyclooxygenase (COX)-2 in a dose-dependent manner on stimulated RBL-2H3 cells, however, S. flavescens not affect cell viability. The protein expression level of nuclear factor (NF)-${\kappa}B$ (p65) was decreased in the nucleus and suppressed the degradation of inhibitory protein $I{\kappa}B-{\alpha}$ protein, the activation of extracellular signal-regulated kinases (ERK) mitogen-activated protein kinase (MAPK) by S. flavescens. These results suggest that S. flavescens could be involved anti-allergic effect by control of $NF-{\kappa}B$ (p65) translocation into the nucleus through inhibition of $I{\kappa}B-{\alpha}$ degradation and suppression of pro-inflammatory cytokines expression.

Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity

  • Sung, Nak Yoon;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-${\alpha}$ in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-${\kappa}B$-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-${\kappa}B$ nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-${\kappa}B$ activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-${\kappa}B$ activation.

Anti-inflammatory Activities of Ethanol Extracts from Leaf, Seed, and Seedpod of Nelumbo nucifera (연잎, 연자육, 연자방 에탄올 추출물의 항염증 활성)

  • Lee, Eun-Joo;Seo, Yu-Mi;Kim, Yong-Hyun;Chung, Chungwook;Sung, Hwa-Jung;Sohn, Ho-Yong;Park, Jong-Yi;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.436-441
    • /
    • 2019
  • Nelumbo nucifera, also known as sacred lotus, has mainly been used as a food throughout the Asian countries. In the present study, we prepared ethanol extracts from leaf (NL), seed (NS), and seedpod (NSP) of Nelumbo nucifera and investigated their anti-inflammatory activities in mouse macrophage RAW 264.7 cells. To evaluate the anti-inflammatory activities of NL, NS, and NSP, nitric oxide (NO) production was measured in LPS-stimulated RAW 264.7 cells. NL, NS, and NSP significantly reduced NO production in a dose-dependent manner without affecting cell viabilities. NL, NS, and NSP dramatically decreased the protein expression of pro-inflammatory genes such as iNOS and COX-2. NL, NS, and NSP also suppressed phosphorylation of MAPKs and the nuclear translocation of $NF-{\kappa}B$ p65 indicating they have their anti-inflammatory activities via regulating mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B ($NF-{\kappa}B$) pathways. In addition, we analyzed the production of reactive oxygen species (ROS) by the treatment of NL, NS, and NSP. All extracts reduced ROS production in a dose-dependent manner. And also, they increased heme oxygenase-1 (HO-1) protein expression and the nuclear translocation of nuclear respiratory factor 2 (Nrf2). In conclusion, our results suggest that Nelumbo nucifera has its anti-inflammatory activity via regulating MAPKs, $NF-{\kappa}B$, and Nrf2/HO-1 pathways.

Tolfenamic Acid Suppresses Inflammatory Stimuli-Mediated Activation of NF-κB Signaling

  • Shao, Hong Jun;Lou, Zhiyuan;Jeong, Jin Boo;Kim, Kui Jin;Lee, Jihye;Lee, Seong-Ho
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • Tolfenamic acid (TA) is a traditional non-steroid anti-inflammatory drug (NSAID) and has been broadly used for the treatment of migraines. Nuclear factor kappa B (NF-${\kappa}B$) is a sequence-specific transcription factor and plays a key role in the development and progression of inflammation and cancer. We performed the current study to investigate the underlying mechanisms by which TA suppresses inflammation focusing on NF-${\kappa}B$ pathway in TNF-${\alpha}$ stimulated human normal and cancer cell lines and lipopolysaccharide (LPS)-stimulated mouse macrophages. Different types of human cells (HCT116, HT-29 and HEK293) and mouse macrophages (RAW264.7) were pre-treated with different concentrations of TA and then exposed to inflammatory stimuli such as TNF-${\alpha}$ and LPS. Transcriptional activity of NF-${\kappa}B$, $l{\kappa}B-{\alpha}$-degradation, p65 translocation and mitogen-activated protein kinase (MAPK) activations were measured using luciferase assay and Western blots. Pre-treatment of TA repressed TNF-${\alpha}$- or LPS-stimulated NF-${\kappa}B$ transactivation in a dose-dependent manner. TA treatment reduced degradation of $l{\kappa}B-{\alpha}$ and subsequent translocation of p65 into nucleus. TA significantly down-regulated the phosphorylation of c-Jun N-terminal kinase (JNK). However, TA had no effect on NF-${\kappa}B$ signaling and JNK phosphorylation in HT-29 human colorectal cancer cells. TA possesses anti-inflammatory activities through suppression of JNK/NF-${\kappa}B$ pathway in different types of cells.

Regulation of Interleukin-17 Production in Patients with Rheumatoid Arthritis by Phosphoinositide 3-kinase (PI3K)/Akt and Nuclear Factor KappaB (NF-κB) Dependent Signal Transduction Pathway (류마티스 관절염 환자의 말초혈액 단핵세포에서 Phosphoinositide 3-Kinase (PI3K)/Akt와 Nuclear Factor KappaB (NF-κB) 신호전달을 통한 IL-17 생성조절)

  • Kim, Kyoung-Woon;Cho, Mi-La;Lee, Sang-Heon;Min, So-Youn;Park, Mi Kyung;Park, Sung-Hwan;Jue, Dae-Myung;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.310-319
    • /
    • 2003
  • Inflammatory mediators has been recognized as an important role in the pathogenesis of rheumatoid arthritis (RA). IL-17 is increasingly recognized as an important regulator of immune and inflammatory responses, including induction of proinflammatory cytokines and osteoclastic bone resorption. Evidence of the expression and proinflammatory activity of IL-17 has been demonstrated in RA synovium and in animal models of RA. However, the signaling pathways that regulate IL-17 production remain unknown. In the present study, we investigated the role of the phosphatidylinositol 3 kinase (PI3K)-Akt pathway in the regulation of IL-17 production in RA. PBMC were separated from RA (n=24) patients, and stimulated with various agents (anti CD3, anti CD28, PHA, ConA, IL-15). IL-17 levels were determined by sandwich ELISA and RT-PCR. The production of IL-17 was significantly increased in cells treated with anti-CD3 antibody, PHA, IL-15 or MCP-1 (P<0.05). ConA also strongly induced IL-17 production (P<0.001), whereas TNF-alpha, IL-1beta, IL-18 or TGF-beta did not. IL-17 was detected in the PBMC of patients with osteoarthritis (OA) but their expression levels were much lower than those of RA PBMC. Anti-CD3 antibody activated the PI3K-Akt pathway and activation of the PI3K-Akt pathway resulted in a pronounced augmentation of nuclear factor kappaB ($NF-{\kappa}B$). IL-17 production by activated PBMC in RA is completely or partially blocked in the presence of $NF-{\kappa}B$ inhibitor PDTC and PI3K-Akt inhibitor, wortmannin and LY294002, respectively. Whereas the inhibition of AP-1 and extracellular signal-regulated kinase (ERK)1/2 did not affect IL-17 production. These results provide new insight into that PI3K/Akt and $NF-{\kappa}B$ dependent signal transduction pathway could be involved in the overproduction of key inflammatory cytokine, IL-17 in rheumatoid arthritis.

Identification of the Constituents for Nrf2 Activation and NF-${\kappa}B$ Suppression in Dangguisoo-san

  • Kim, Kyun-Ha;Jeong, Ja-Haeng;Jeong, Han-Sol;Ha, Ki-Tae;Joo, Myung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.344-350
    • /
    • 2012
  • Previously, we showed that Dangguisoo-san (DGSS), an herbal formula that has been traditionally used for the treatment of blood stagnation, is also applicable for inflammatory lung diseases. Activation of Nrf2, an anti-inflammatory transcription factor, and suppression of NF-${\kappa}B$, a pro-inflammatory transcription factor, were suggested as an underlying mechanism. However, the constituents responsible for these activities remain unidentified. To this end, we prepared the water extracts of the 9 constituents of DGSS and tested for their effect on Nrf2 by using an Nrf2-Luciferase reporter cell line and western blot analysis. Results show that Carthamus tinctorius L.(CT), one of the 9 constituents of DGSS, strongly activated Nrf2. Similarly, when measured the effect of the 9 constituents on NF-${\kappa}B$ by using an NF-${\kappa}B$-Luciferase reporter cell line and western blotting for nuclear p65, indicative of activated NF-${\kappa}B$, most constituents were capable of suppressing NF-${\kappa}B$ in various degrees. However, CT and Cyperus rotundus L. (CR) strongly suppressed NF-${\kappa}B$ activity elicited by LPS. Of note, CT activated Nrf2 and suppressed NF-${\kappa}B$ strongly as well. Our results contributes to corroborating the anti-inflammatory effects of DGSS by identifying CT and CR as two major herbs responsible for activating Nrf2 and suppressing NF-${\kappa}B$. These results suggest that CT and CR represent some of the effects of DGSS in the regulation of inflammation.

The cancer/testis antigen CAGE induces MMP-2 through the activation of NF-κB and AP-1

  • Kim, Young-Mi;Jeoung, Doo-Il
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.758-763
    • /
    • 2009
  • Cancer-associated antigen (CAGE) induces the expression of matrix metalloproteinase-2 (MMP-2) by activating Akt, which in turn interacts with inhibitory kappa kinase $\beta$ ($I{\kappa}K{\beta}$) to activate nuclear factor ${\kappa}B$ (NF-${\kappa}B$). Akt and p38 mitogen activated protein kinase (p38 MAPK) are necessary for CAGE-mediated induction of the AP-1 subunit JunB, whereas extracellular regulated kinase (ERK) is necessary for the induction of fos-related antigen-1 (Fra-1). Induction of MMP-2 by CAGE requires activator of protein-1 (AP-1) to be bound. Specific binding of JunB to MMP-2 promoter sequences was shown by chromatin immunoprecipitation (ChIP) analysis.