• Title/Summary/Keyword: Nuclear factor erythroid 2-related factor 2 (Nrf2)

Search Result 131, Processing Time 0.038 seconds

NAD(P)H-quinone oxidoreductase-1 silencing modulates cytoprotection related protein expression in cisplatin cytotoxicity

  • Park, Se Ra;Jung, Ju Young;Kim, Young-Jung;Jung, Da Young;Lee, Mee Young;Ryu, Si Yun
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • NAD(P)H-quinone oxidoreductase-1 (NQO1) is a down-stream target gene of nuclear factor erythroid 2-related factor 2 (Nrf2), and performs diverse biological functions. Recently, NQO1 is recognized as an effective gene for the cytotoxic inserts with its diverse biological functions, which is focused on antioxidant properties. The aim of present study was to assess the impact of NQO1 knockdown on cytoprotection-related protein expression in cisplatin cytotoxicity by using small interfering (si) RNA targeted on NQO1 gene. Cytotoxicity of cisplatin on ACHN cells was assessed in a dose- and time-dependent manner after siScramble or siNQO1 treatment. After cisplatin treatment, cells were subjected to cell viability assay, western-blot analysis, and immunofluorescence study. The cell viability was decreased in the siNQO1 cells (50%) than the siScramble cells (70%) after 24 h of cisplatin (20μM) treatment. Moreover, cytoprotection-related protein expressions were markedly suppressed in the siNQO1 cells after cisplatin treatment. The expression of Nrf2 and Klotho were decreased by 20% and 40%, respectively, of that in siScramble cells. Nrf2 and Klotho activation were also decreased in cisplatin treated siNQO1 cells, confirmed by cytoplasm-tonuclear translocation. Our findings demonstrate that the increased cisplatin-induced cytotoxicity was accompanied by suppressed Nrf2 activation and Klotho expression in siNQO1 cells.

Protective effects of lutein against vancomycin-induced acute renal injury in mice via upregulation of peroxisome proliferator-activated receptor gamma/nuclear factor erythroid 2-related factor 2 and inhibition nuclear factor-kappaB/caspase 3

  • Emeka, Promise M.;Rasool, Sahibzada T.;Morsy, Mohamed A.;Islam, Mohamed I. Hairul;Chohan, Muhammad S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.321-331
    • /
    • 2021
  • Vancomycin, an antibiotic used occasionally as a last line of treatment for methicillin-resistant Staphylococcus aureus, is reportedly associated with nephrotoxicity. This study aimed at evaluating the protective effects of lutein against vancomycin-induced acute renal injury. Peroxisome proliferator-activated receptor gamma (PPARγ) and its associated role in renoprotection by lutein was also examined. Male BALB/c mice were divided into six treatment groups: control with normal saline, lutein (200 mg/kg), vancomycin (250 mg/kg), vancomycin (500 mg/kg), vancomycin (250 mg/kg) with lutein, and vancomycin (500 mg/kg) with lutein groups; they were euthanized after 7 days of treatment. Thereafter, samples of blood, urine, and kidney tissue of the mice were analyzed, followed by the determination of levels of N-acetyl-β-D-glucosaminidase (NAG) in the urine, renal creatine kinase; protein carbonyl, malondialdehyde, and caspase-3 in the kidney; and the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-kappaB (NF-κB) in renal tissue. Results showed that the levels of protein carbonyl and malondialdehyde, and the activity of NAG, creatine kinase and caspase-3, were significantly increased in the vancomycin-treatment groups. Moreover, the levels of Nrf2 significantly decreased, while NF-κB expression increased. Lutein ameliorated these effects, and significantly increased PPARγ expression. Furthermore, it attenuated vancomycin-induced histological alterations such as, tissue necrosis and hypertrophy. Therefore, we conclude that lutein protects against vancomycin-induced renal injury by potentially upregulating PPARγ/Nrf2 expression in the renal tissues, and consequently downregulating the pathways: inflammation by NF-κB and apoptosis by caspase-3.

Anti-fibrotic effects of L-2-oxothiazolidine-4-carboxylic acid via modulation of nuclear factor erythroid 2-related factor 2 in rats

  • Kim, In-Hee;Kim, Dae-Ghon;Hao, Peipei;Wang, Yunpeng;Kim, Seong-Hun;Kim, Sang-Wook;Lee, Seung-Ok;Lee, Soo-Teik
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.348-353
    • /
    • 2012
  • L-2-Oxothiazolidine-4-carboxylic acid (OTC) is a cysteine prodrug that maintains glutathione in tissues. The present study was designed to investigate anti-fibrotic and anti-oxidative effects of OTC via modulation of nuclear factor erythroid 2-related factor 2 (Nrf2) in an in vivo thioacetamide (TAA)-induced hepatic fibrosis model. Treatment with OTC (80 or 160 mg/kg) improved serum liver function parameters and significantly ameliorated liver fibrosis. The OTC treatment groups exhibited significantly lower expression of α-smooth muscle actin, transforming growth factor-β1, and collagen α1 mRNA than that in the TAA model group. Furthermore, the OTC treatment groups showed a significant decrease in hepatic malondialdehyde level compared to that in the TAA model group. Nrf2 and heme oxygenase-1 expression increased significantly in the OTC treatment groups compared with that in the TAA model group. Taken together, these results suggest that OTC restores the anti-oxidative system by upregulating Nrf2; thus, ameliorating liver injury and a fibrotic reaction.

Recent Updates on Acetaminophen Hepatotoxicity: The Role of Nrf2 in Hepatoprotection

  • Gum, Sang Il;Cho, Min Kyung
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.165-172
    • /
    • 2013
  • Acetaminophen (APAP) known as paracetamol is the main ingredient in Tylenol, which has analgesic and anti-pyretic properties. Inappropriate use of APAP causes major morbidity and mortality secondary to hepatic failure. Overdose of APAP depletes the hepatic glutathione (GSH) rapidly, and the metabolic intermediate leads to hepatocellular death. This article reviews the mechanisms of hepatotoxicity and provides an overview of current research studies. Pharmacokinetics including metabolism (activation and detoxification), subsequent transport (efflux)-facilitating excretion, and some other aspects related to toxicity are discussed. Nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated gene battery plays a critical role in the multiple steps associated with the mitigation of APAP toxicity. The role of Nrf2 as a protective target is described, and potential natural products inhibiting APAP toxicity are outlined. This review provides an update on the mechanism of APAP toxicity and highlights the beneficial role of Nrf2 and specific natural products in hepatoprotection.

The impaired redox status and activated nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway in wooden breast myopathy in broiler chickens

  • Pan, Xiaona;Zhang, Lin;Xing, Tong;Li, Jiaolong;Gao, Feng
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.652-661
    • /
    • 2021
  • Objective: Wooden breast (WB) is a novel myopathy affecting modern broiler chickens, which causes substantial economic losses in the poultry industry. The objective of this study was to evaluate the effect of WB abnormality on meat quality, redox status, as well as the expression of genes of the nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. Methods: A total of 80 broilers (Ross 308, 42 days of age, about 2.6 kg body weight) raised at Jiujin farm (Suqian, Jiangsu, China) were used. Twelve unaffected (no detectable hardness of the breast area) and twelve WB-affected (diffuse remarkable hardness in the breast muscle) birds were selected from the commercial broiler farm according to the criteria proposed by previous studies. Results: The results indicated that WB showed histological lesions characterized by fiber degeneration and fibrosis, along with an increase of muscle fiber diameter (p<0.05). Moreover, higher pH value, lightness, yellowness, drip loss and cooking loss were observed in the WB group (p<0.05). Compared with the normal breast (NOR) group, the WB group showed higher formation of reactive oxygen species (p<0.05), increased level of oxidation products and antioxidant activities (p<0.05), accompanied with mitochondrial damages and lower mitochondrial membrane potential (p<0.05). Meanwhile, the relative mRNA expressions of Nrf2 and its downstream antioxidant genes including heme oxygenase-1, NAD(P)H qui none dehydrogenase 1, glutathione peroxidase, superoxide dismutase, and glutamate-cysteine ligase were higher than those of the NOR group (p<0.05). Conclusion: In conclusion, WB myopathy impairs meat quality by causing oxidative damages and mitochondrial dysfunction in broilers, even though the activated Nrf2/antioxidant response element pathway provides protection for the birds.

Methanol extract of Myelophycus caespitosus ameliorates oxidative stress-induced cytotoxicity in C2C12 murine myoblasts via activation of heme oxygenase-1

  • Cheol Park;Hyun Hwangbo;Min Ho Han;Jin-Woo Jeong;Suengmok Cho;Gi-Young Kim;Hye-Jin Hwang;Yung Hyun Choi
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • Myelophycus caespitosus, a brown alga belonging to genus Myelophycus, has been traditionally used as a food and medicinal resource in Northeastern Asia. However, few studies have been conducted on its pharmacological activity. In this study, we evaluated whether methanol extract of M. caespitosus (MEMC) could protect against oxidative damage caused by hydrogen peroxide (H2O2) in C2C12 murine myoblasts. Our results revealed that MEMC could suppress H2O2-induced growth inhibition and DNA damage while blocking the production of reactive oxygen species. In H2O2-treated cells, cell cycle progression was halted at the G2/M phase, accompanied by changes in expression of key cell cycle regulators. However, these effects were attenuated by MEMC. In addition, we found that MEMC protected cells from induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, MEMC enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) and expression and activity of heme oxygenase-1 (HO-1) in H2O2-treaetd C2C12 myoblasts. However, such anti-apoptotic and cytoprotective effects of MEMC were greatly abolished by HO-1 inhibitor, suggesting that MEMC could increase Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress.

Ipomoea aquatic Extracts (IAE) Attenuated Microglial Inflammation via Nrf2 Signaling (공심채 추출물(IAE)의 LPS로 유도된 미세아교세포에서의 Nrf2기전을 통한 항염증 효과)

  • Jiwon Choi;Sang Yoon Choi;Jinyoung Hur
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.5
    • /
    • pp.365-372
    • /
    • 2023
  • Ipomoea aquatic is a leafy vegetable of the Convolvulaceae family, and is a tropical plant widely inhabiting southern China and Southeast Asia, and is widely known as Morning Glory in the West. In this study, the anti-inflammatory effects of ethyl acetate extract from Ipomoea aquatic extracts (IAE) were tested against lipopolysaccharide (LPS)-induced activation microglia BV2 cells. The production of nitric oxide (NO) and cell viability were measured using the Griess reagent and MTT assay, respectively. Inflammatory cytokine [interleukin (IL)-6, tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β)] were detected qPCR in LPS induced BV-2 cells. Subsequently, nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs), and nuclear factor erythroid-2-related factor 2 (Nrf2) were analyzed through western blot analyses and immunofluorescence. Ipomoea aquatic down-regulated of inflammatory markers and up-regulated anti-inflammatory and anti-oxidants in BV2 cells.

Zearalenone regulates key factors of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling pathway in duodenum of post-weaning gilts

  • Cheng, Qun;Jiang, Shu zhen;Huang, Li bo;Yang, Wei ren;Yang, Zai bin
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1403-1414
    • /
    • 2021
  • Objective: This study explored the mechanism of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway under conditions of zearalenone (ZEA)-induced oxidative stress in the duodenum of post-weaning gilts. Methods: Forty post-weaning gilts were randomly allocated to four groups and fed diets supplemented with 0, 0.5, 1.0, or 1.5 mg/kg ZEA. Results: The results showed significant reductions in the activity of the antioxidant enzymes total superoxide dismutase and glutathione peroxidase and increases the malondialdehyde content with increasing concentrations of dietary ZEA. Immunohistochemical analysis supported these findings by showing a significantly increased expression of Nrf2 and glutathione peroxidase 1 (GPX1) with increasing concentrations of ZEA. The relative mRNA and protein expression of Nrf2, GPX1 increased linearly (p<0.05) and quadratically (p<0.05), which was consistent with the immunohistochemical results. The relative mRNA expression of Keap1 decreased linearly (p<0.05) and quadratically (p<0.05) in the duodenum as the ZEA concentration increased in the diet. The relative mRNA expression of modifier subunit of glutamate-cysteine ligase (GCLM) increased quadratically (p<0.05) in all ZEA treatment groups and the relative mRNA expression of quinone oxidoreductase 1 (NQO1) catalytic subunit of glutamate-cysteine ligase decreased linearly (p<0.05) and quadratically (p<0.05) in the ZEA1.0 group and ZEA1.5 group. The relative protein expression of Keap1 and GCLM decreased quadratically (p<0.05) in the duodenum as the ZEA concentration increased in the diet, respectively. The relative protein expression of NQO1 increased linearly (p<0.05) and quadratically (p<0.05) in all ZEA treatment groups in the duodenum. Conclusion: These findings suggest that ZEA regulates the expression of key factors of the Keap1-Nrf2 signaling pathway in the duodenum, which enables resistance to ZEA-induced oxidative stress. Further studies are needed to examine the effects of ZEA induced oxidative stress on other tissues and organs in post-weaning gilts.

Fraxetin Induces Heme Oxygenase-1 Expression by Activation of Akt/Nrf2 or AMP-activated Protein Kinase α/Nrf2 Pathway in HaCaT Cells

  • Kundu, Juthika;Chae, In Gyeong;Chun, Kyung-Soo
    • Journal of Cancer Prevention
    • /
    • v.21 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • Background: Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, has been reported to possess antioxidative, anti-inflammatory and neuroprotective effects. A number of recent observations suggest that the induction of heme oxygenase-1 (HO-1) inhibits inflammation and tumorigenesis. In the present study, we determined the effect of fraxetin on HO-1 expression in HaCaT human keratinocytes and investigated its underlying molecular mechanisms. Methods: Reverse transcriptase-PCR and Western blot analysis were performed to detect HO-1 mRNA and protein expression, respectively. Cell viability was measured by the MTS test. The induction of intracellular reactive oxygen species (ROS) by fraxetin was evaluated by 2′,7′-dichlorofluorescin diacetate staining. Results: Fraxetin upregulated mRNA and protein expression of HO-1. Incubation with fraxetin induced the localization of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus and increased the antioxidant response element-reporter gene activity. Fraxetin also induced the phosphorylation of Akt and AMP-activated protein kinase (AMPK)α and diminished the expression of phosphatase and tensin homolog, a negative regulator of Akt. Pharmacological inhibition of Akt and AMPKα abrogated fraxetin-induced expression of HO-1 and nuclear localization of Nrf2. Furthermore, fraxetin generated ROS in a concentration-dependent manner. Conclusions: Fraxetin induces HO-1 expression through activation of Akt/Nrf2 or AMPKα/Nrf2 pathway in HaCaT cells.

Anti-inflammatory effect of beluga lentil extract in RAW 264.7 macrophages (RAW 264.7 대식세포에서 벨루가 렌틸 추출물의 항염증 효과)

  • Hyeon-Ji Song;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.462-473
    • /
    • 2024
  • The anti-inflammatory effect of beluga lentil extract (BLE) and its underlying mechanisms were investigated in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Treatment with BLE significantly decreased nitric oxide (NO) production and protein and mRNA expressions of inducible NO synthase (iNOS) in LPS-treated RAW 264.7 cells. Down-regulation of this inflammatory gene expression was not associated with NF-κB/MAPK signaling pathways, and further mechanistic studies demonstrated that BLE decreased LPS-induced iNOS expression through upregulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated heme oxygenase-1 (HO-1) expression. These results suggest that beluga lentil represent a potential source of natural anti-inflammatory agents, and further studies will be necessary to determine its anti-inflammatory effects in vivo.