• Title/Summary/Keyword: Nuclear factor (NF)-${\kappa}B$

Search Result 801, Processing Time 0.026 seconds

Inhibitory Effect of Berberine on TNF-$\alpha$-induced U937 Monocytic Cell Adhesion to HT29 Human Colon Epithelial Cells is Mediated through NF-$\kappa$B Rather than PPAR$\gamma$ (TNF-$\alpha$ 자극에 의한 U937 단핵구 세포의 HT29 대장 상피 세포 부착에 대한 Berberine의 PPAR$\gamma$가 아닌 NF-$\kappa$B 경로를 통한 억제 효과)

  • Park, Su-Young;Lee, Gwang-Ik;Kim, Il-Yeob;Kim, Jung-Ae
    • YAKHAK HOEJI
    • /
    • v.54 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • Berberine, an isoquinoline alkaloid, has a wide range of pharmacological effects, including anti-inflammation. It has been reported that berberine inhibits experimental colitis through inhibition of IL-8, and that inhibitory effect of berberine on inflammatory cytokine expression is mediated through peroxisome proliferator activated receptor (PPAR)-$\gamma$. In this study, we examined the effects and action mechanism of berberine on the tumor necrosis factor (TNF)-$\alpha$-induced monocyte adhesion to HT29 human colonic epithelial cells, which is commonly used as an in vitro model of inflammatory bowel disease (IBD). Berberine significantly inhibited the TNF-$\alpha$-induced monocyte adhesion to HT29, which is similar to the effect of PDTC, a nuclear factor (NF)-$\kappa$B inhibitor. However, ciglitazone and GW, the ligands of PPAR-$\gamma$, did not suppress the TNF-$\alpha$-induced monocyte adhesion to HT29 cells. In addition, TNF-$\alpha$-induced chemokine expression and NF-$\kappa$B transcriptional activity were significantly inhibited by berberine in a concentration-dependent manner. The results suggest that inhibitory effect of berberine on colitis is mediated through suppression of NF-$\kappa$B and NF-$\kappa$B-dependent chemokine expression.

Silymarin Inhibits Morphological Changes in LPS-Stimulated Macrophages by Blocking NF-${\kappa}B$ Pathway

  • Kim, Eun Jeong;Lee, Min Young;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.211-218
    • /
    • 2015
  • The present study showed that silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), inhibited lipopolysaccharide (LPS)-induced morphological changes in the mouse RAW264.7 macrophage cell line. We also showed that silymarin inhibited the nuclear translocation and transactivation activities of nuclear factor-kappa B (NF-${\kappa}B$), which is important for macrophage activation-associated changes in cell morphology and gene expression of inflammatory cytokines. BAY-11-7085, an NF-${\kappa}B$ inhibitor, abrogated LPS-induced morphological changes and NO production, similar to silymarin. Treatment of RAW264.7 cells with silymarin also inhibited LPS-stimulated activation of mitogen-activated protein kinases (MAPKs). Collectively, these experiments demonstrated that silymarin inhibited LPS-induced morphological changes in the RAW264.7 mouse macrophage cell line. Our findings indicated that the most likely mechanism underlying this biological effect involved inhibition of the MAPK pathway and NF-${\kappa}B$ activity. Inhibition of these activities by silymarin is a potentially useful strategy for the treatment of inflammation because of the critical roles played by MAPK and NF-${\kappa}B$ in mediating inflammatory responses in macrophages.

Inhibitory Effect of Rosa laevigata on Nitric Oxide Synthesis and $NF-{\kappa}B$ Activity in lipopolysaccharide-stimulated Macrophages (lipopolysaccharide로 자극된 대식세포에서 금앵자의 Nitric Oxide 생성 및 $NF-{\kappa}B$ 활성 억제 효과)

  • Ha, Hyun-Hee;Park, Sun-Young;Ko, Woo-Shin;Jang, Jeong-Su;Kim, Young-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.385-389
    • /
    • 2008
  • Nitric oxide (NO) has been suggested to play an important role in endotoxin-mediated shock and inflammation. In this study, we investigated the effect of Rosa laevigata Michx. (Rosaceae) on the production of NO and the molecular mechanism of its action. Rosa laevigata inhibited NO generation and iNOS expression in LPS-stimulated murine macrophages. Activity of nuclear $factor{-\kappa}B\;(NF{-\kappa}B)$ and the degradation of $I{\kappa}B-{\alpha}$ were suppressed by Rosa laevigata. Furthermore, extracellular signal-stimulated kinase (ERK), which is known to be involved in $NF{-\kappa}B$ activation, is inhibited by Rosa laevigata. These results suggest that Rosa laevigata could exert its anti-inflammatory actions by suppressing the synthesis of NO through inhibition of $NF{-\kappa}B$ activity.

Expression of Nuclear Factor Kappa B (NF-κB) as a Predictor of Poor Pathologic Response to Chemotherapy in Patients with Locally Advanced Breast Cancer

  • Prajoko, Yan Wisnu;Aryandono, Teguh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.595-598
    • /
    • 2014
  • Background: NF-${\kappa}B$ inhibits apoptosis through induction of antiapoptotic proteins and suppression of proapoptotic genes. Various chemotherapy agents induce NF-${\kappa}B$ translocation and target gene activation. We conducted the present study to assess the predictive value of NF-${\kappa}B$ regarding pathologic responses after receiving neoadjuvant chemotherapy. Materials and Methods: We enrolled 131 patients with locally advanced invasive ductal breast carcinoma. Immunohistochemistry (IHC) was used to detect NF-${\kappa}B$ expression. Evaluation of pathologic response was elaborated with the Ribero classification. Results: Expression of NF-${\kappa}B$ was significantly associated with poor pathological response (p=0.02). From the multivariate analysis, it was found that the positive expression of NF-${\kappa}B$ yielded RR=1.74 (95%CI 0.77 to 3.94). Conclusions: NF-${\kappa}B$ can be used as a predictor of poor pathological response after neoadjuvant chemotherapy.

Role of NFAT5 in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells (인체 지방 유래 중간엽 줄기세포의 골분화 조절 기전에서 NFAT5의 역할)

  • Lee, Sun Young;Yang, Ji won;Jung, Jin Sup
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.471-478
    • /
    • 2013
  • Human adipose tissue-derived mesenchymal stem cells (hADSCs) have therapeutic potential, including the ability to self-renew and differentiate into multiple lineages. Understanding of molecular mechanisms of stem cell differentiation is important for improving the therapeutic efficacies of stem cell transplantation. In this study, we determined the role of nuclear factor of activated T cells (NFAT5) in the osteogenic differentiation of hADSCs. The down-regulation of NFAT5 expression by the transfection of a specific siRNA significantly inhibited osteogenic differentiation of hADSCs and decreased the activity of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) promoter without affecting their proliferation and adipogenic differentiation. The inhibition of NFAT5 expression inhibited the basal and Tumor Necrosis Factor ${\alpha}$ (TNF-${\alpha}$) induced activation of NF-${\kappa}B$, but it did not affect TNF-${\alpha}$-induced degradation of the $I{\kappa}B$ protein. These findings indicate that NFAT5 plays an important role in the osteogenic differentiation of hADSCs through the modulation of the NF-${\kappa}B$ pathway.

Role of the Nuclear Transcription Factor NF-κB Caused by Acute Hypoxia in the Heart (급성 저산소증 상태에서 심장 내 전사인자 NF-κB의 기능)

  • Joo, Chan Uhng;Juhng, Woo Suk;Kim, Jae Cheol;Yi, Ho Keun
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.9
    • /
    • pp.1106-1113
    • /
    • 2002
  • Purpose : Nuclear ($factor-{\kappa}BNF-{\kappa}B$) is now recognized as playing a potential role in programmed cell death and the adaptive response to various stress. Cellular hypoxia is a primary manifestation of many cardiovascular diseases. It seems that vascular endothelial growth factor (VEGF) and insulin like growth factor-I(IGF-I) have a function as a protective molecule in the heart against several stress including hypoxia. In this study, the role of $NF-{\kappa}B$ to the cellular response and regulation of protective molecules against the acute hypoxia in the heart was studied. Methods : To cause acute hypoxic stress to the heart, Sprague Dawley rats were exposed to hypoxic chamer($N_2$ 92% and $O_2$ 8%). After the hypoxic exposure, nuclear proteins, total proteins and mRNA were isolated from heart. Translocation of the transcription factors $NF-{\kappa}B$, NF-ATc, AP-1 and NKX-2.5 were evaluated by electrophoretic mobility shift assay(EMSA). The expression of IGF-I and VEGF were studied before and after the hypoxic stress by competitive-PCR, Northern hybridization and Western hybridization. To confirm the role of the $NF-{\kappa}B$ in the heart, the rats also were pretreated with diethyl-dithiocarbamic acid(DDTC) into peritoneal cavity to block $NF-{\kappa}B$ translocation into nucleus. Results : The expression of $NF-{\kappa}B$, AP-1 and NF-ATc were increased by the hypoxic stress. Increased expression of the VEGF and IGF-I were also observed by the hypoxic stress. However, the blocking of the $NF-{\kappa}B$ translocation reduced those expressions of VEGF and IGF-I. Conclusion : These results suggest that $NF-{\kappa}B$ has a protective role against the acute hypoxia through several gene expression, especially VEGF and IGF-I in heart muscle.

Auranofin Downregulates Nuclear Factor-κB Activation via Nrf2-Independent Mechanism (오라노핀에 의한 nuclear factor κB 활성저해는 Nrf2 활성화와 무관한 기전에 의함)

  • Kim, Nam-Hoon;Park, Hyo-Jung;Kim, In-Sook
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1772-1776
    • /
    • 2010
  • Transcription factors Nrf2 and NF-${\kappa}B$ are important regulators of the innate immune response, and their cross-talks in inflammation have been reported. Previously, we demonstrated that gold(I)-compound auranofin, an inhibitor of NF-${\kappa}B$ signal, induced Nrf2 activation in human synovial cells and monocytic cells. To investigate whether the Nrf2 activation is involved in the mechanism of the auranofin-attenuated NF-${\kappa}B$ signaling, we examined the effects of Nrf2 knockdown on NF-${\kappa}B$ activation using rheumatic synovial cells. When the cells were transfected with a specific siRNA for Nrf2, the gene expression was perfectly blocked. However, the Nrf2 knockdown did not cancel the suppressive effect of auranofin on TNF-$\alpha$-induced $I{\kappa}B-{\alpha}$ degradation. Treatment with a specific siRNA for HO-1, which is a target of Nrf2 and plays a role in anti-inflammation, also did not affect the blocking activity of auranofin on $I{\kappa}B-{\alpha}$ degradation. In addition, auranofin-inhibited ICAM-1 expression was not restored by Nrf2 knockdown. These findings indicate that the activated Nrf2 and HO-1 are not associated with the suppressive action of auranofin on the pro-inflammatory cytokines-stimulated NF-${\kappa}B$ activation. This suggests that Nrf2/HO-1 and NF-${\kappa}B$ signals, which are regulated by auranofin, participate in the anti-inflammatory action of auranofin via independent pathways in rheumatic synovial cells.

Licochalcone B Exhibits Anti-inflammatory Effects via Modulation of NF-κB and AP-1

  • Kim, Jin-Kyung;Jun, Jong-Gab
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.218-226
    • /
    • 2015
  • The present study investigated the mechanisms of licochalcone B (LicB)-mediated inhibition of the inflammatory response in murine macrophages. RAW264.7 murine macrophages were cultured in the absence or presence of lipopolysacharide (LPS) with LicB. LicB suppressed the generation of nitric oxide and the pro-inflammatory cytokines interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor-${\alpha}$. LicB also inhibited the expression of mRNA for inducible nitric oxide synthase and pro-inflammatory cytokines induced by LPS. Moreover, LicB inhibited nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 translocation into the nucleus in a dose-dependent manner. Thus, LicB mainly exerts its anti-inflammatory effects by inhibiting the LPS-induced NF-${\kappa}B$ and activator protein-1 signaling pathways in macrophages, which subsequently diminishes the expression and release of various inflammatory mediators. LicB shows promise as a therapeutic agent in inflammatory diseases.

Trans-10, cis-12 Conjugated Linoleic Acid Modulates Tumor Necrosis Factor-${\alpha}$ Production and Nuclear Factor-${\kappa}B$ Activation in RAW 264.7 Macrophages Through Formation of Reactive Oxygen Species (RAW 264.7 세포에 있어 t10c12-CLA의 ROS를 통한 TNF-${\alpha}$ 생산 및 NF-${\kappa}B$ 활성 조절)

  • Park, So-Young;Kang, Byeong-Teck;Kang, Ji-Houn;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.31 no.6
    • /
    • pp.469-476
    • /
    • 2014
  • The aims of this study were to explore the effects of conjugated linoleic acid (CLA) on reactive oxygen species (ROS) production in lipopolysaccharide (LPS)-naïve and LPS-stimulated RAW 264.7 macrophages and to examine whether these effects affect the regulation of tumor necrosis factor-alpha (TNF-${\alpha}$) production, and nuclear factor-kappa B (NF-${\kappa}B$) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) activation. Trans-10, cis-12(t10c12)-CLA increased the production of ROS, as well as TNF-${\alpha}$ in LPS-naïve RAW 264.7 cells. The CLA-induced TNF-${\alpha}$ production was suppressed by treatment of diphenyleneiodonium chloride (DPI), a NADPH oxidase inhibitor. In addition, CLA enhanced the activities of NF-${\kappa}B$ and $PPAR{\gamma}$ in LPS-naïve RAW 264.7 cells, and this effect was abolished with DPI treatment. LPS treatment increased ROS production, whereas CLA reduced LPS-induced ROS production. LPS increased both TNF-${\alpha}$ production and NF-${\kappa}B$ activity, whereas t10c12-CLA reduced TNF-${\alpha}$ production and NF-${\kappa}B$ activity in LPS-stimulated RAW 264.7 cells. DPI treatment suppressed LPS-induced ROS production and NF-${\kappa}B$ activity. Moreover, DPI enhanced the inhibitory effects of t10c12-CLA on TNF-${\alpha}$ production and NF-${\kappa}B$ activation in LPS-stimulated RAW 264.7 cells. However, neither t10c12-CLA nor DPI affected $PPAR{\gamma}$ activity in LPS-stimulated RAW 264.7 cells. Taken together, these data indicate that t10c12-CLA induces TNF-${\alpha}$ production by increasing ROS production in LPS-naïve RAW 264.7 cells, which is mediated by the enhancement of NF-${\kappa}B$ activity via $PPAR{\gamma}$ activation. By contrast, t10c12-CLA suppresses TNF-${\alpha}$ production by inhibiting ROS production and NF-${\kappa}B$ activation via a $PPAR{\gamma}$-independent pathway in LPS-stimulated RAW 264.7 cells. These results suggest that t10c12-CLA can modulate TNF-${\alpha}$ production and NF-${\kappa}B$ activation through formation of ROS in RAW 264.7 macrophages.

Anti-inflammatory effects of Chrysanthemum boreale flower (산국 꽃의 항염 활성 연구)

  • You, Ki-Sun;Bang, Chan-Sung;Lee, Kyung-Jin;Ham, In-Hye;Choi, Ho-Young
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • Objectives : Chrysanthemum boreale flower is widely distributed in Korea, Japan, China, and Eastern countries. C. boreale flower is also one of the herbs used for the treatment of various inflammatory disease in Korean Medicine. So, this research was designed to study anti-inflammatory effect of C. boreale flower and its mechanism. Methods : We investigated nitro oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production by ELISA. And expressions of inducible nitric oxide synthase (iNOS), Cyclooxygenase-2 (COX-2) and nuclear factor-${\kappa}B$ P50/65 (NF-${\kappa}B$ P50, NF-${\kappa}B$ P65) were measured in RAW 264.7 murine macrophage cells induced by LPS. Results : MeOH ex., EtOAc fr., $CHCl_3$ fr. and Water fr. of C. boreale flower showed anti-inflammatory effect through inhibition of NO and PGE expression respectively. Among them, EtOAc fr. and $CHCl_3$ fr. inhibited production of NO and $PGE_2$ through inhibition of iNOS and COX-2 expression. And MeOH ex., EtOAc fr. and $CHCl_3$ fr. inhibited translocation of NF-${\kappa}B$ P65, NF-${\kappa}B$ P50 by inhibiting phosphrylation of $I{\kappa}B$. Conclusions : MeOH ex. EtOAc fr, $CHCl_3$ fr., and Water fr. of the C. boreale flower have anti-inflammatory activity.