• Title/Summary/Keyword: Nuclear dismantling

Search Result 101, Processing Time 0.023 seconds

Considerations for the Successful Verification and Dismantlement of North Korea's Nuclear Program (북핵 프로그램의 성공적 검증.폐기를 위한 고려사항)

  • Moon, Joo-Hyun;Park, Byung-Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.143-151
    • /
    • 2009
  • Due to a more favorable climate in the recent relationship between U.S. and North Korea, North Korea nuclear issue is expected to enter the new phase of nuclear verification. From now on, our government should make preparation for taking the appropriate steps against the situation developed after the declaration by North Korea. Therefore, this paper is to identify the problems that may be occurred in the process of verifying and dismantling North Korea's nuclear program and to suggest the policy considerations that should be incorporated in establishing the action plan for verifying and dismantling her nuclear program, based on the analysis of experiences to verify and dismantle the WMDs in the former Soviet Union and in Iraq, respectively.

  • PDF

Underwater Laser Cutting of Thick Stainless Steel in Various Cutting Directions for Application to Nuclear Decommissioning

  • Shin, Jae Sung;Oh, Seong Y.;Park, Seung-Kyu;Kim, Taek-Soo;Park, Hyunmin;Lee, Jonghwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.279-287
    • /
    • 2021
  • For application in nuclear decommissioning, underwater laser cutting studies were conducted on thick stainless-steel plates for various cutting directions using a 6 kW fiber laser. For cutting along the horizontal direction with horizontal laser irradiation, the maximum cutting speed was 110 mm·min-1 for a 48 mm thick stainless-steel plate. For cutting along the vertical direction with horizontal laser irradiation, a maximum speed of 120 mm·min-1 was obtained for the same thickness, which confirmed that the cutting performance was similar but slightly better. Moreover, when cutting with vertically downward laser irradiation, the maximum cutting speed was 120 mm·min-1 for a plate of the same thickness. Thus, the cutting performance for vertical irradiation was nearly identical to that for horizontal irradiation. In conclusion, it was possible to cut thick stainless-steel plates regardless of the laser irradiation and cutting directions, although the assist gas rose up due to buoyancy. These observations are expected to benefit laser cutting procedures during the actual dismantling of nuclear facilities.

Assessing the Feasibility of Diver Access During Dismantling of Reactor Vessel Internals

  • Kukhyun Son;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2024
  • In 2017, a decision was made to permanently shut down Kori Unit 1, and preparations began to be made for its decontamination and decommissioning. The dismantling of the biological shields concrete, reactor vessel (RV), and reactor vessel internals (RVI) is crucial to the nuclear decommissioning process. These components were radiologically activated by the neutron activation reaction occurring in the reactor during its operational period. Because of the radioactivity of the RV and RVI of Kori Unit 1, remotely controlled systems were developed for cutting within the cavity to reduce radiation exposure. Specialized equipment was developed for underwater cutting operations. This paper focuses on modeling related to RVI operations using the MAVRIC code and the dose calculation for a diver entering the cavity. The upper and lower parts of the RVI are classified as low-level radioactive waste, while the sides that came into contact with the fuel are classified as intermediate-level radioactive waste. Therefore, the modeling presented in this paper only considers the RVI sides because the upper and lower parts have a minimal impact on the radiation exposure. These research findings are anticipated to contribute to enhancing the efficiency and safety of nuclear reactor decommissioning operations.