• Title/Summary/Keyword: Nuclear architecture

Search Result 228, Processing Time 0.028 seconds

Operation optimization of auxiliary electric boiler system in HTR-PM nuclear power plant

  • Du, Xingxuan;Ma, Xiaolong;Liu, Junfeng;Wu, Shifa;Wang, Pengfei
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2840-2851
    • /
    • 2022
  • Electric boilers (EBs) are the backup steam source for the auxiliary steam system of high-temperature gas-cooled reactor nuclear power plants. When the plant is in normal operations, the EB is always in hot standby status. However, the current hot standby operation strategy has problems of slow response, high power consumption, and long operation time. To solve these problems, this study focuses on the optimization of hot standby operations for the EB system. First, mathematical models of an electrode immersion EB and its accompanying deaerator were established. Then, a control simulation platform of the EB system was developed in MATLAB/Simulink implementing the established mathematical models and corresponding control systems. Finally, two optimization strategies for the EB hot standby operation were proposed, followed by dynamic simulations of the EB system transient from hot standby to normal operations. The results indicate that the proposed optimization strategies can significantly speed up the transient response of the EB system from hot standby to normal operations and reduce the power consumption in hot standby operations, improving the dynamic performance and economy of the system.

Implementation of an Architecture for the Dismantling Digital Mock-up System (해체 디지털목업시스템 아키텍쳐 구현)

  • Park Hee-Seoung;Kim Sung-Kyun;Lee Kune-Woo;Oh Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.237-247
    • /
    • 2005
  • It is necessary to forecast the various dismantling activities prior to dismantling nuclear facilities by using various software instead of a physical mock-up system because the dismantling in a contaminated with radioactivity cause the results of an unexpected situation. The component that needs to develop a dismantling mock-up system was examined. There are many component systems such as a decommissioning database system,3D dosimetric mapping that represents a distribution of a radionuclide contamination, a component of modeling for nuclear facility and devices include the decontamination and decommissioning. The research of software architecture about these components was carried out because these component systems that have been independently doesn't describe not only to visual an activities of Decontamination and Decommissioning(D&D) but also to evaluate it. The result was established an architecture that consist of an visualization module which could be visualized an D&D activities and a simulation module which can be evaluated a dismantling schedule and decommissioning cost.

  • PDF

Study on cognitive load of OM interface and eye movement experiment for nuclear power system

  • Zhang, Jingling;Su, Daizhong;Zhuang, Yan;QIU, Furong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.78-86
    • /
    • 2020
  • The operation and monitoring (OM) interface is the digital medium between nuclear power system and operators. The cognitive load of OM interface has an important effect on the operation errors made by operator during OM task between operator and computer. The cognitive load model of OM interface is constructed for analysing the composition and influencing factors of OM interface cognitive load. And to study the coping strategies and methods for cognitive load of nuclear power system. An experiment method based on eye movement is proposed to measure the cognitive load of OM interface. Experiment case is carried out with 20 subjects and typical OM interface of a nuclear power system simulator. The OM interface is optimized based on the experiment results. And the results comparison between the original OM interface and the optimized OM interface shows that the cognitive load model and proposed method is valuable contributions in reducing the cognitive load and improving the interaction efficiency of OM tasks.

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.

A basic study 3D model advancement method for nuclear power plant (원자력 발전설비의 3D 모델 상세화 방안에 대한 기초 연구)

  • Lim, Byung-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.37-38
    • /
    • 2018
  • BIM(Building Information Modeling) in the architecture, VDC(Virtual Design and Construction) defined CIFE(Center for Integrated Facility Engineering) of Stanford university in USA, and Data-driven design definition issued by TECDOC-1284 of IAEA are doing data-level design generated by 3D CAD technology, integrating and managing related information based on the 3D model, and Using 3D models effectively during nuclear power plant life cycle. 3D model of domestic nuclear power industry is using interference review between design fields, 4D system linked 3D construction model and schedule activity, but the 3D model generated in the design phase is effectively not utilized during the construction, operation, decommissioning. therefore, This study is aimed to suggest 3D model LOD(Level of Detail) advancement method through the analysis of existing literature, 2D drawings, and 3D models throughout nuclear power plant lifecycle.

  • PDF

Implementation of an Operator Model with Error Mechanisms for Nuclear Power Plant Control Room Operation

  • Suh, Sang-Moon;Cheon, Se-Woo;Lee, Yong-Hee;Lee, Jung-Woon;Park, Young-Taek
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.349-354
    • /
    • 1996
  • SACOM(Simulation Analyser with Cognitive Operator Model) is being developed at Korea Atomic Energy Research Institute to simulate human operator's cognitive characteristics during the emergency situations of nuclear power plans. An operator model with error mechanisms has been developed and combined into SACOM to simulate human operator's cognitive information process based on the Rasmussen's decision ladder model. The operational logic for five different cognitive activities (Agents), operator's attentional control (Controller), short-term memory (Blackboard), and long-term memory (Knowledge Base) have been developed and implemented on blackboard architecture. A trial simulation with a scenario for emergency operation has been performed to verify the operational logic. It was found that the operator model with error mechanisms is suitable for the simulation of operator's cognitive behavior in emergency situation.

  • PDF

Multi-channel analyzer based on a novel pulse fitting analysis method

  • Wang, Qingshan;Zhang, Xiongjie;Meng, Xiangting;Wang, Bao;Wang, Dongyang;Zhou, Pengfei;Wang, Renbo;Tang, Bin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2023-2030
    • /
    • 2022
  • A novel pulse fitting analysis (PFA) method is presented for the acquisition of nuclear spectra. The charging process of the feedback capacitor in the resistive feedback charge-sensitive preamplifier is equivalent to the impulsive pulse, and its impulse response function (IRF) can be obtained by non-linear fitting of the falling edge of the nuclear pulse. The integral of the IRF excluding the baseline represents the energy deposition of the particles in the detector. In addition, since the non-linear fitting process in PFA method is difficult to achieve in the conventional architecture of spectroscopy system, a new multi-channel analyzer (MCA) based on Zynq SoC is proposed, which transmits all the data of nuclear pulses from the programmable logic (PL) to the processing system (PS) by high-speed AXI-Stream in order to implement PFA method with precision. The linearity of new MCA has been tested. The spectrum of 137Cs was obtained using LaBr3(Ce) scintillator detector, and was compared with commercial MCA by ORTEC. The results of tests indicate that the MCA based on PFA method has the same performance as the commercial MCA based on pulse height analysis (PHA) method and excellent linearity for γ-rays with different energies, which infers that PFA method is an effective and promising method for the acquisition of spectra. Furthermore, it provides a new solution for nuclear pulse processing algorithms involving regression and iterative processes.

A Standard Way of Constructing a Data Warehouse based on a Neutral Model for Sharing Product Dat of Nuclear Power Plants (원자력 발전소 제품 데이터의 공유를 위한 중립 모델 기반의 데이터 웨어하우스의 구축)

  • Mun, D.H.;Cheon, S.U.;Choi, Y.J.;Han, S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.74-85
    • /
    • 2007
  • During the lifecycle of a nuclear power plant many organizations are involved in KOREA. Korea Plant Engineering Co. (KOPEC) participates in the design stage, Korea Hydraulic and Nuclear Power (KHNP) operates and manages all nuclear power plants in KOREA, Dusan Heavy Industries manufactures the main equipment, and a construction company constructs the plant. Even though each organization has a digital data management system inside and obtains a certain level of automation, data sharing among organizations is poor. KHNP gets drawing and technical specifications from KOPEC in the form of paper. It results in manual re-work of definition and there are potential errors in the process. A data warehouse based on a neutral model has been constructed in order to make an information bridge between design and O&M phases. GPM(generic product model), a data model from Hitachi, Japan is addressed and extended in this study. GPM has a similar architecture with ISO 15926 "life cycle data for process plant". The extension is oriented to nuclear power plants. This paper introduces some of implementation results: 1) 2D piping and instrument diagram (P&ID) and 3D CAD model exchanges and their visualization; 2) Interface between GPM-based data warehouse and KHNP ERP system.

Sensor Communication Network Architecture for Harsh Environments of Nuclear Power Plant (원전 극한환경적용 센서 통신망 구조)

  • Cho, Jai-Wan;Lee, Joon-Koo;Hur, Seop;Koo, In-Soo;Hong, Seok-Boong
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.540-541
    • /
    • 2008
  • 원자력 발전소 격납구조(containment) 내에 설치되는 센서, 구동기(actuator) 및 설비는 원전의 안전운전과 함께 방사능 누출사고와 같은 중대사고(severe accident)를 예방하기 위한 것이다. 격납구조 내부는 Category I 등급으로 분류되며, 격납구조 내부에 설치되는 센서, 구동기, 기기 및 통신망은 IEEE Std. 323-1974에서 정의하는 극한환경(harsh environment) 요건에서 생존할 수 있는 내환경성이 요구된다. 이러한 엄격한 내환경성 요건으로 인해 일반 산업의 IT 기반 센서통신망이 원전 격납건물 내부에는 적용되지 않고 있다. 최근에 이르러 독일을 중심으로 신규로 건설 중이거나 계획 중인 원전에서는 일반 산업의 IT 기반 센서 통신망 적용이 검토되고 있다. 본 논문에서는 IT 기반의 첨단 센서 통신망 기술을 격납구조내부와 같은 극한 환경에 적용하기 위한 방안을 제시하고자 한다. 정상운전중의 원전 격납 건물 내부의 환경(온도, 감마선, 습도) 특성과 중대 사고를 가정한 DBA (설계 기준사고) 요건에서의 환경 특성을 조사하였다. 또한 설계기준사고에서 정의한 감마선 조사 환경에서 통신 시스템의 생존성을 실험하였다. 이를 토대로 격납구조내부의 원전 극한 환경 통신망의 개선방안을 제시하고자 한다.

  • PDF