• Title/Summary/Keyword: Nuclear Research Facilities

Search Result 385, Processing Time 0.037 seconds

Exposure Assessment and Management of Ionizing Radiation (전리방사선 노출과 관리)

  • Chung, Eun-Kyo;Kim, Kab-Bae;Song, Se-Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2015
  • Objectives: To investigate safety and health management, conditions in factories or facilities handling radiation-generating devices and radioactive isotopes were reviewed in terms of regulations of radiation safety control in Korea. Radiation exposure levels generated at those facilities were directly measured and evaluated for establishing an effective safety and health management plan. Methods: Government organizations with laws and systems of radiation safety and health were investigated and compared. There are three laws governing radiation-related employment such as occupational safety and health acts, nuclear safety acts, and medical service acts. We inspected 12 workplaces as research objects:four workplaces that manufacture and assemble semiconductor devices, three non-destructive inspection workplaces that perform inspections on radiation penetration, and five workplaces in textile and tire manufacturing. Monitoring of radiation exposure was performed through two methods. Spatial and surface monitoring using real-time radiation instruments was performed on each site handling radiation generating devices and radioactive isotopes in order to identify radiation leakage. Results: According to the occupational safety and health act, there is no legal obligation to measure ionizing radiation and set dose limits. This can cause confusion in the application of the laws, because the scopes and contents are different from each other. Surface dose rates in radiation generating devices such as implanters, thickness gages and accelerators, which were registered according to nuclear safety acts, using surveymeters, and seven of 36 facilities(19.4%) exceeded the international standards for surface radiation dose of $10{\mu}Sv/hr$. Conclusions: The results showed that occupational health and safety acts require a separate provision for measuring and assessing the radiation exposure of workers performing radiation work. Like noise, ionizing radiation will also periodically be controlled by including it in the object factors of work-environment measurement.

A Study on the Suitability of the Number of Entrances for Emergency Evacuation Facilities Using Regression Analysis (회귀분석을 이용한 비상대피시설의 출입구 개수 적정성에 관한 연구)

  • Roh, Jeong-Heon;Lee, Jeong-Moon;Kim, Kuk-Joo;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.431-438
    • /
    • 2019
  • In this research, the proper number of entrances in the evacuation facilities for civil and military personnel was determined by using parametric study and regression analysis. The current standards on the emergency evacuation facility only set the number of possible evacuees and the architectural floor area after the evacuation have been completed. On the other hand, there are needs to consider the dynamic standards along with allowable evacuation time such as the number of entrance, staircases and so on rather than the static standards such as the floor area. The number of entrances and their location are required in order to account for the allowed evacuation time of particular number of people in a set area. The results of this research could be contributed to the standards which should contain the dynamic conditions associated with evacuation.

Effect of the new photoatomic data library EPDL2017 to mass attenuation coefficient calculation of materials used in the nuclear medicine facilities using EpiXS software

  • Jecong, J.F.M.;Hila, F.C.;Balderas, C.V.;Guillermo, N.R.D.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3440-3447
    • /
    • 2022
  • The accuracy of the photoatomic cross-section data is of great importance in the field of radiation protection, particularly in the characterization of radiation shielding materials. With the release of the latest and probably the most accurate photoatomic data library, EPDL2017, the need to re-evaluate all the existing and already established mass attenuation coefficients (MACs) of all radiation shielding materials arises. The MACs of several polymers, alloy-based, glasses, and building materials used in a nuclear medicine facility were investigated using the EPDL2017 library embedded in EpiXS software and were compared to MACs available in the literature. The relative differences between MACEpiXS and MACXCOM were negligible, ranging from 0.02% to 0.36% for most materials. However, for material like a glass comprising of elements Te and La evaluated near their corresponding K-edge energies, the relative differences in MACs increased up to 1.46%. On the other hand, a comparison with MACs calculated based on EPDL97 (a predecessor of EPDL2017) revealed as much as a 6.61% difference. Also, it would seem that the changes in MACs were more evident in the materials composed of high atomic number elements evaluated at x-ray energies compared to materials composed of low atomic number elements evaluated at gamma-ray energies.

Estimation of Input Material Accounting Uncertainty With Double-Stage Homogenization in Pyroprocessing

  • Lee, Chaehun;Kim, Bong Young;Won, Byung-Hee;Seo, Hee;Park, Se-Hwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Pyroprocessing is a promising technology for managing spent nuclear fuel. The nuclear material accounting of feed material is a challenging issue in safeguarding pyroprocessing facilities. The input material in pyroprocessing is in a solid-state, unlike the solution state in an input accountability tank used in conventional wet-type reprocessing. To reduce the uncertainty of the input material accounting, a double-stage homogenization process is proposed in considering the process throughput, remote controllability, and remote maintenance of an engineering-scale pyroprocessing facility. This study tests two types of mixing equipment in the proposed double-stage homogenization process using surrogate materials. The expected heterogeneity and accounting uncertainty of Pu are calculated based on the surrogate test results. The heterogeneity of Pu was 0.584% obtained from Pressurized Water Reactor (PWR) spent fuel of 59 WGd/tU when the relative standard deviation of the mass ratio, tested from the surrogate powder, is 1%. The uncertainty of the Pu accounting can be lower than 1% when the uncertainty of the spent fuel mass charged into the first mixers is 2%, and the uncertainty of the first sampling mass is 5%.

Potentiality of Using Vertical and Three-Dimensional Isolation Systems in Nuclear Structures

  • Zhou, Zhiguang;Wong, Jenna;Mahin, Stephen
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1237-1251
    • /
    • 2016
  • Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP), with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D) isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary.

Calculation of Energy Dependence of Calibration Constants in the Continuous Radioactive Effluent Monitors (연속방사능(連續放射能) 측정감시기(測定監視器)에서 교정상수(較正常數)의 에너지의존성(依存性) 계산(計算))

  • Lee, Soo-Yong;Yook, Chong-Chul;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.6 no.1
    • /
    • pp.41-44
    • /
    • 1981
  • A method is presented by which precise evaluation of radioactive concentrations in liquid or gaseous effluent released from large nuclear facilities is possible. Calculations have been made of the calibration constants at different energies for a commonly used liquid and gaseous effluent monitors as well. It is expected that the method could be applicable to the particular monitors with different geometrical configuration with simple modifications.

  • PDF

Preparation of Styrene-Ethyl acylate Core-shell Structured Detection Materials for aMeasurement of the Wall Contamination by Emulsion Polymerization

  • Hwang, Ho-Sang;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.84-85
    • /
    • 2009
  • New approaches for detecting, preventing and remedying environmental damage are important for protection of the environment. Procedures must be developed and implemented to reduce the amount of waste produced in chemical processes, to detect the presence and/or concentration of contaminants and decontaminate fouled environments. Contamination can be classified into three general types: airborne, surface and structural. The most dangerous type is airborne contamination, because of the opportunity for inhalation and ingestion. The second most dangerous type is surface contamination. Surface contamination can be transferred to workers by casual contact and if disturbed can easily be made airborne. The decontamination of the surface in the nuclear facilities has been widely studied with particular emphasis on small and large surfaces. The amount of wastes being produced during decommissioning of nuclear facilities is much higher than the total wastes cumulated during operation. And, the process of decommissioning has a strong possibility of personal's exposure and emission to environment of the radioactive contaminants, requiring through monitoring and estimation of radiation and radioactivity. So, it is important to monitor the radioactive contamination level of the nuclear facilities for the determination of the decontamination method, the establishment of the decommissioning planning, and the worker's safety. But it is very difficult to measure the surface contamination of the floor and wall in the highly contaminated facilities. In this study, the poly(styrene-ethyl acrylate) [poly(St-EA)] core-shell composite polymer for measurement of the radioactive contamination was synthesized by the method of emulsion polymerization. The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS)as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SOS) as an emulsifier using ammonium persulfate (APS) as an initiator. The polymer was made by impregnating organic scintillators, 2,5-diphenyloxazole (PPO) and 1,4-bis[5-phenyl-2-oxazol]benzene (POPOP). Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by IT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Radiation pollution level the detection about under using examined the beta rays. The morphology of the poly(St-EA) composite polymer synthesized by the method of emulsion polymerization was a core-shell structure, as shown in Fig. 1. Core-shell materials consist of a core structural domain covered by a shell domain. Clearly, the entire surface of PS core was covered by PEA. The inner region was a PS core and the outer region was a PEA shell. The particle size distribution showed similar in the range 350-360 nm.

  • PDF

Radiological Dose Analysis to the Public Resulting from the Operation of Daedeok Nuclear Facilities (대덕부지 원자력관련시설 운영에 따른 주민피폭선량 현황분석)

  • Jeong, Hae Sun;Kim, Eun Han;Jeong, Hyo Joon;Han, Moon Hee;Park, Mi Sun;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.38-45
    • /
    • 2014
  • This paper describes the results of assessment of radiological dose resulting from operation of the Daedeok nuclear facilities including the HANARO research reactor, which has been performed to assure whether or not to comply with the regulation standards of the radioactive effluents releases. Based on the meteorological data and the radiation source term, the maximum individual doses were evaluated from 2010 to 2012. The atmospheric dispersion and the deposition factors of gaseous effluents were calculated using the XOQDOQ computer code. ENDOS-G and ENDOS-L code systems were also used for maximum individual dose calculation from gaseous and liquid effluents, respectively. The results were compared with the regulation standards for the radioactive effluents presented by the Nuclear Safety and Security Commission (NSSC). The effective doses and the thyroid doses of the maximum individual were calculated at the maximum exposed point in the Daedeok site, and contributions of exposure pathways to the radiological doses resulting from gaseous and liquid radioactive effluents were evaluated at each facility of the Daedeok site. As a result, the maximum exposed age was analysed to be the child group, and the operation of HANARO research reactor had a major effect more than 90% on the individual doses. The main exposure pathways for gaseous radioactive effluent were from ingestion and inhalation. The effective doses and the thyroid doses were considerably influenced by tritium and iodine, respectively. The gaseous radioactive effluents contributed more than 90% on the total doses, whereas the contributions of the liquid radioactive effluents were relatively low. Consequently, the maximum individual dose due to radioactive effluents from the nuclear facilities within the Daedeok site were less than 3% of the regulation standard over 3 years; therefore, it can be concluded that radioactive effluents from the nuclear facilities were well managed, with the radiation-induced health detriment for residents around the site being negligible.

A Proposal for the Management Standards of Radioactive Mixed Waste in Korea (한국의 방사성혼합폐기물 관리기준 제안)

  • Lee, Byeong Gwan;Kim, Chang Lak;Lee, Sun Kee;Kim, Heon;Sung, Suk Hyun;Park, Hae Soo;Kong, Chang Sig
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.85-96
    • /
    • 2021
  • Radioactive mixed waste (RMW) means waste mixed with radioactive substances and hazardous substances. In Korea, there are definitions and disposal restrictions on RMW in the Nuclear Safety Management Act, but it is difficult to apply because the contents are insufficient, so this paper proposed applicable management standards. The main RMW generated from nuclear power plants is waste oil, waste asbestos, PCB, and waste fluorescent liquid, and their radiation characteristics are mostly at very low levels and some are estimated at low levels. In addition to nuclear power plants, RMW also occurs in research institutes, industries, and hospitals. The acceptance criteria of all disposal facilities in the world basically prohibit disposal of RMW unless the hazardous substances of RMW are removed or mitigated below the standard value. Cases in Korea, the United States, Japan and Europe were reviewed to propose the RMW management standards in Korea. With reference to the results of the above review, this paper clearly defined RMW and proposed detailed management standards for the separation, storage, treatment and disposal of hazardous substances by applying the Waste Control Act. It also mentioned legislation of management standards, regulatory methods, and acceptance criteria of disposal facility operator.

Positive or negative? Public perceptions of nuclear energy in South Korea: Evidence from Big Data

  • Park, Eunil
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.626-630
    • /
    • 2019
  • After several significant nuclear accidents, public attitudes toward nuclear energy technologies and facilities are considered to be one of the essential factors in the national energy and electricity policy-making process of several nations that employ nuclear energy as their key energy resource. However, it is difficult to explore and capture such an attitude, because the majority of prior studies analyzed public attitudes with a limited number of respondents and fragmentary opinion polls. In order to supplement this point, this study suggests a big data analyzing method with K-LIWC (Korean-Linguistic Inquiry and Word Count), sentiment and query analysis methods, and investigates public attitudes, positive and negative emotional statements about nuclear energy with the collected data sets of well-known social media and network services in Korea over time. Results show that several events and accidents related to nuclear energy have consistent or temporary effects on the attitude and ratios of the statements, depending on the kind of events and accidents. The presented methodology and the use of big data in relation to the energy industry is suggested as it can be helpful in addressing and exploring public attitudes. Based on the results, implications, limitations, and future research areas are presented.