• Title/Summary/Keyword: Nuclear Research Facilities

Search Result 377, Processing Time 0.022 seconds

Laser decontamination for radioactive contaminated metal surface: A review

  • Qian Wang;Feisen Wang;Chuang Cai;Hui Chen;Fei Ji;Chen Yong;Dasong Liao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.12-24
    • /
    • 2023
  • With the improvement of laser technology, the strategic needs of efficient and precise decontamination of various components in nuclear application units can be fulfilled by laser decontamination. The surface contaminants of nuclear facilities mainly exist both as loose contaminated layer and fixed oxide layer. The types of radionuclides and contamination layer thickness are closely related to the operation status of nuclear facilities, which have an important influence on the laser decontamination process. This study reviewed the mechanism of laser surface treatment and the influence of laser process parameters on the decontamination thickness, decontamination factor, decontamination efficiency and the distribution of aerosol particle. Although multiple studies have been performed on the mechanism of laser processing and laser decontamination process, there are few studies on the microscopic process mechanism of laser decontamination and the influence of laser decontamination on surface properties. In particular, the interaction between laser and radioactive contaminants needs more research in the future.

Underwater Laser Cutting of Thick Stainless Steel in Various Cutting Directions for Application to Nuclear Decommissioning

  • Shin, Jae Sung;Oh, Seong Y.;Park, Seung-Kyu;Kim, Taek-Soo;Park, Hyunmin;Lee, Jonghwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.279-287
    • /
    • 2021
  • For application in nuclear decommissioning, underwater laser cutting studies were conducted on thick stainless-steel plates for various cutting directions using a 6 kW fiber laser. For cutting along the horizontal direction with horizontal laser irradiation, the maximum cutting speed was 110 mm·min-1 for a 48 mm thick stainless-steel plate. For cutting along the vertical direction with horizontal laser irradiation, a maximum speed of 120 mm·min-1 was obtained for the same thickness, which confirmed that the cutting performance was similar but slightly better. Moreover, when cutting with vertically downward laser irradiation, the maximum cutting speed was 120 mm·min-1 for a plate of the same thickness. Thus, the cutting performance for vertical irradiation was nearly identical to that for horizontal irradiation. In conclusion, it was possible to cut thick stainless-steel plates regardless of the laser irradiation and cutting directions, although the assist gas rose up due to buoyancy. These observations are expected to benefit laser cutting procedures during the actual dismantling of nuclear facilities.

A preparation plan proposal of nuclear power plant decommissioning radioactive waste characterization report (원자력발전소 해체 방사성폐기물 특성보고서 작성 방안 제안)

  • Kim, Chang Lak;Lee, Sun Kee;Kim, Heon;Park, Hae Soo;Sung, Suk Hyun;Kong, Chang Sig
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.76-84
    • /
    • 2021
  • Radioactive waste generated from nuclear power plant decommissioning shall be strictly managed so that radioactive materials above the allowable limit are not leaked into the environment. Radioactive wastes shall be classified and treated for management based on characteristics such as the type of waste, physicochemical properties, nuclide concentration and radioactivity. Waste characterization report shall be prepared and submitted to the disposal facility operator to ensure that the treated waste is suitable for disposal. The disposal facility operator shall review the waste Characterization report and visit the nuclear power plant decommissioning site to ensure that the wastes are processed step by step according to the plan. The waste Characterization report may be used as input data to evaluate disposal facility safety. Domestic and foreign data are collected and reviewed to confirm the entire processes from waste generation to delivery. This paper proposes the method to prepare the waste Characterization report which contains data and information on waste characteristics, treatment facilities & method and packaging method & container.

Preliminary ALARA residual radioactivity levels for Kori-1 decommissioning and analysis of results and effects of remediation area

  • Seo, Hyung-Woo;Yu, Ji-Hwan;Kim, Gi-Lim;Son, Jin-Won
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1136-1144
    • /
    • 2022
  • The effects of nearby residents and the public by the residual contamination from the decommissioning of nuclear facilities should comply with the dose criteria, and whether additional remediation action is necessary from the ALARA perspective must be determined. Therefore, we analyzed the requirements of ALARA action levels and performed preliminary ALARA evaluation. The ratio of residual contamination concentration to DCGL was calculated for the basement fill and the building occupancy mode. The results showed that the additional remediation actions below DCGL are not justified. In addition, we analyzed the effect of remediation area. It was noted that the increase of the remediation area showed a positive correlation with the Conc/DCGL value in the basement fill mode. On the other hand, in the building occupancy mode, since the floor area of the building is the target of remediation and has the effect of increasing the same as the evaluation area of the building occupants, but due to the difference in the amount of increase, the Conc/DCGL showed a negative correlation. We expect the approach and method of ALARA evaluation can be utilized for concrete cost-benefit calculation during the decommissioning or at the time of remediation.

An analytical model to decompose mass transfer and chemical process contributions to molecular iodine release from aqueous phase under severe accident conditions

  • Giedre Zablackaite;Hiroyuki Shiotsu;Kentaro Kido;Tomoyuki Sugiyama
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.536-545
    • /
    • 2024
  • Radioactive iodine is a representative fission product to be quantified for the safety assessment of nuclear facilities. In integral severe accident analysis codes, the iodine behavior is usually described by a multi-physical model of iodine chemistry in aqueous phase under radiation field and mass transfer through gas-liquid interface. The focus of studies on iodine source term evaluations using the combination approach is usually put on the chemical aspect, but each contribution to the iodine amount released to the environment has not been decomposed so far. In this study, we attempted the decomposition by revising the two-film theory of molecular-iodine mass transfer. The model involves an effective overall mass transfer coefficient to consider the iodine chemistry. The decomposition was performed by regarding the coefficient as a product of two functions of pH and the overall mass transfer coefficient for molecular iodine. The procedure was applied to the EPICUR experiment and suppression chamber in BWR.

Fuel Cost Analysis of CANDU-PHWR Wolsung Nuclear Power Plant Unit 1

  • Lee, Ik-Hwan;Lee, Chang-Kun;Yang, Chang-Guk;Yook, Chong-Chul
    • Nuclear Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.151-163
    • /
    • 1977
  • Being based on the Segal method, calculation was carried out for the natural uranium nuclear fuel cost with Zircaloy-4 cladding having design Parameters of Wolsung Nuclear Power Plant, CANDU-PHWR (Unit 1) , currently under construction in Korea aiming at its completion in 1982. An attempt was also made for tile sensitivity analysis of each fuel component; j. e., depreciation of fuel manufacturing plant caused by its life time, its load factor, production scale expansion of plant facilities, variations of construction and operating costs of fuel manufacturing plant, fluctuation of interest rates, extent of uranium ore price increases and effect of learning factor.

  • PDF

Monte Carlo simulation for verification of nonparametric tests used in final status surveys of MARSSIM at decommissioning of nuclear facilities

  • Sohn, Wook;Hong, Eun-hee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1664-1675
    • /
    • 2021
  • In order to verify the statistical performance of the nonparametric tests used in the MARSSIM approach, all plausible contamination distribution types that can be encountered in a survey area should be investigated. As the first of such investigations, this study aims to perform the verification for normal distribution of the contamination in a survey area by simulating the collection of random samples from it through the Monte Carlo simulation. The results of the simulations conducted for a total of 81 simulation cases showed that Sign test and WRS test both exhibited an excellent statistical performance: 100% for the former and 98.8% for the latter. Therefore, in final status surveys of the MARSSIM approach, a high statistical performance can be expected in applying the nonparametric hypothesis tests to survey areas whose net contamination can be assumed to be normally distributed.

Radwaste characteristics and Disposal Facility Waste Acceptance Criteria (국내 방사성폐기물 특성과 방사성폐기물 처분시설 폐기물인수기준)

  • Sung, Suk-Hyun;Jeong, Yi-Yeong;Kim, Ki-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.347-356
    • /
    • 2008
  • The purpose of Radioactive Waste Acceptance Criteria(WAC) is to verify a radioactive waste compliance with radioactive disposal facility requirements in order to maintain a disposal facility's performance objectives and to ensure its safety. To develop WAC which is conformable with domestic disposal site conditions, we furthermore analysed the WAC of foreign disposal sites similar to the Kyung-Ju disposal site and the characteristics of various wastes which are being generated from Korea nuclear facilities. Radioactive WAC was developed in the technical cooperation with the Korea Atomic Energy Research Institute in consideration of characteristics of the wastes which are being generated from various facilities, waste generators' opinions and other conditions. The established criteria was also discussed and verified at an advisory committee which was comprised of some experts from universities, institutes and the industry. So radioactive WAC was developed to accept all wastes which are being generated from various nuclear facilities as much as possible, ensuring the safety of a disposal facility. But this developed waste acceptance criteria is not a criteria to accept all the present wastes generated from various nuclear facilities, so waste generators must seek an alternative treatment method for wastes which were not worth disposing of, and then they must treat the wastes more to be acceptable at a disposal site. The radioactive disposal facility WAC will continuously complement certain criteria related to a disposal concentration limit for individual radionuclide in order to ensure a long-term safety.

  • PDF

Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants

  • Nidhin, T.S.;Bhattacharyya, Anindya;Behera, R.P.;Jayanthi, T.;Velusamy, K.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1589-1599
    • /
    • 2017
  • Field programmable gate arrays (FPGAs) are getting more attention in safety-related and safety-critical application development of nuclear power plant instrumentation and control systems. The high logic density and advancements in architectural features make static random access memory (SRAM)-based FPGAs suitable for complex design implementations. Devices deployed in the nuclear environment face radiation particle strike that causes transient and permanent failures. The major reasons for failures are total ionization dose effects, displacement damage dose effects, and single event effects. Different from the case of space applications, soft errors are the major concern in terrestrial applications. In this article, a review of radiation effects on FPGAs is presented, especially soft errors in SRAM-based FPGAs. Single event upset (SEU) shows a high probability of error in the dependable application development in FPGAs. This survey covers the main sources of radiation and its effects on FPGAs, with emphasis on SEUs as well as on the measurement of radiation upset sensitivity and irradiation experimental results at various facilities. This article also presents a comparison between the major SEU mitigation techniques in the configuration memory and user logics of SRAM-based FPGAs.

Derivation of site-specific derived concentration guideline levels at Korea Research Reactor-1&2 sites

  • Kim, Geun-Ho;Do, Tae Gwan;Kwon, Jae;Ryu, Gangwoo;Kim, Kwang Pyo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.493-500
    • /
    • 2022
  • The objective of this study was to derive derived concentration guideline levels (DCGLs) reflecting the site-specific characteristics of KRR-1&2. A total of 7 nuclides (H-3, C-14, Co-60, Sr-90, Cs-137, Eu-152, and Eu-154) were selected for DCGLs derivation. Radiation dose at the sites was evaluated with RESRAD-ONSITE program. The dose contribution due to direct external exposure was the highest during the entire evaluation period. Ingestion had the second effect. The DCGLs of Co-60 was derived to be 0.051 Bq/g, and DCGLs of Cs-137 was 0.193 Bq/g. The DCGLs of H-3 showed the highest value of 129 Bq/g. The ratio of DCGLs derived by applying site-specific values and default values ranged from 0.27 to 19.6. For six nuclides excluding H-3, KRR-1&2 sites and the overseas NPP sites showed similar DCGLs. H-3 showed large differences in DCGLs from this study and overseas NPPs. The large difference resulted from input parameter values applied to the sites. In conclusion, it is critical to apply site-specific parameter values reflecting the site characteristics to derive DCGLs for decommissioned site clearance. The result of this study can be used as a reference for nuclide selection and DCGLs derivation reflecting the site characteristics when decommissioning nuclear facilities, including nuclear power plants in Korea.