• Title/Summary/Keyword: Nuclear Power Plant decommissioning

Search Result 116, Processing Time 0.021 seconds

The structural and non-linear dynamic analysis for radioactive waste container

  • Yu-Yu Shen;Kuei-Jen Cheng;Hsoung-Wei Chou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3010-3016
    • /
    • 2023
  • In recent years, the development of radioactive waste containers for nuclear facility decommissioning and dismantling is a critical issue because the Taiwan domestic boiling water reactor nuclear power plant is going to be decommissioned. The main purpose of this research is to design a metal container that meets the structural requirements of related regulations. At first, the shielding analysis was performed by varying dimensions of radioactive waste to determine the storage efficiency of the container. Then, a series of structural analyses for operational and accidental conditions of the container with full load were conducted, such as lifting, stacking, and drop impact conditions. On the other hand, the field drop impact tests were carried out to ensure structural integrity. The present research demonstrates the structural safety of the developed container for decommissioned nuclear facilities in Taiwan.

Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code

  • Noori-Kalkhoran, Omid;Shirani, Amir Saied;Ahangari, Rohollah
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1140-1153
    • /
    • 2016
  • Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results.

Review for Applying Spent Fuel Pool Island (SFPI) during Decommissioning in Korea (원전해체시 독립된 사용후핵연료저장조 국내 적용 검토)

  • Baik, Jun-ki;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.163-169
    • /
    • 2015
  • In many nuclear power plant sites in Korea, high density storage racks were installed in the spent fuel pool to expand the spent fuel storage capacity. Nevertheless, the capability of the Hanbit nuclear site will be saturated by 2024. Also, 10 NPPs will reach their design life expiration date by 2029. In the case of the US, SFPI (Spent Fuel Pool Island) operated temporarily as a spent fuel storage option before spent nuclear fuels were transported to an interim storage facility or a final disposal facility. As a spent fuel storage option after shutdown during decommissioning, the SFPI concept can be expected to have the following effects: reduced occupational exposure, lower cost of operation, strengthened safety, and so on. This paper presents a case study associated with the regulations, operating experiences, and systems of SFPI in the US. In conclusion, the following steps are recommended for applying SFPI during decommissioning in Korea: confirmation of design change scope of SFPI and expected final cost, the submission of a decommissioning plan which is reflected in SFPI improvement plans, safety assessment using PSR, application of an operating license change for design change, regulatory body review and approval, design change, inspection by the regulatory body, education and commissioning for SFPI, SFPI operation and periodic inspection, and dismantling of SFPI.

A Pre-Study on the Estimation of NPP Decommissioning Radioactive Waste and Disposal costs for Applying New Classification Criteria (신 분류기준을 적용하기 위한 원전 해체폐기물량 및 처분 비용 산정에 대한 사전 연구)

  • Song, Jong Soon;Kim, Young-Guk;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • Since the commercial operation of Kori Unit #1 nuclear power plant(NPP) started in 1978, 23 units at present are operating in Korea. Radioactive wastes will be steadily generated from these units and accumulated. In addition, the life-extension of NPPs, construction of new NPPs and decontamination and decommissioning research facilities will cause radioactive wastes to increase. Recently, Korea has revised the new classification criteria as was proposed by IAEA. According to the revised classification criteria, low-level, very-low-level and exempt waste are estimated to about 98% of total disposal amount. In this paper, current status of overseas cases and disposal method with new classification criteria are analyzed to propose the most reasonable method for estimating the amount of decommissioning waste when applying the new criteria.

Distinct properties of tungsten austenitic stainless alloy as a potential nuclear engineering material

  • Salama, E.;Eissa, M.M.;Tageldin, A.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.784-791
    • /
    • 2019
  • In the present study, a series of tungsten austenitic stainless steel alloys have been developed by interchanging the molybdenum in standard SS316 by tungsten. This was done to minimize the long-life residual activation occurred in molybdenum and nickel after decommissioning of the power plant. The microstructure and mechanical properties of the prepared alloys are determined. For the sake of increasing multifunction property of such series of tungsten-based austenitic stainless steel alloys, gamma shielding properties were studied experimentally by means of NaI(Tl) detector and theoretically calculated by using the XCOM program. Moreover, fast neutrons macroscopic removal cross-section been calculated. The obtained combined mechanical, structural and shielding properties indicated that the modified austenitic stainless steel sample containing 1.79% tungsten and 0.64% molybdenum has preferable properties among all other investigated samples in comparison with the standard SS316. These properties nominate this new composition in several nuclear application domains such as, nuclear shielding domain.

Issues of New Technological Trends in Nuclear Power Plant (NPPs) for Standardized Breakdown Structure

  • Gebremichael, Dagem D.;Lee, Yunsub;Jung, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.353-358
    • /
    • 2020
  • Recent efforts to develop a common standard for nuclear power plants (NPPs) with the aim of creating (1) a digital environment for a better understanding of NPPs life-cycle management aspect and (2) engineering data interoperability by using existing standards among different unspecified project participants (e.g., owners/operators, engineers, contractors, equipment suppliers) during plants' life cycle process (EPC, O&M, and decommissioning). In order to meet this goal, there is a need for formulating a standardized high-level physical breakdown structure (PBS) for NPPs project management office (PMO). However, high-level PBS must be comprehensive enough and able to represent the different types of plants and the new trends of technologies in the industry. This has triggered the need for addressing the issues of the recent operational NPPs and future technologies' ramification for evaluating the changes in the NPPs physical components in terms of structure, system, and component (SSC) configuration. In this context, this ongoing study examines the recent conventional NPPs and technological trends in the development of future NPPs facilities. New reactor models regarding the overlap of variant issues of nuclear technology were explored. Finally, issues on PBS for project management are explored by the examination of the configuration of NPPs primary system. The primary systems' configuration of different reactor models is assessed in order to clarify the need for analyzing the new trends in nuclear technology and to formulate a common high-level PBS. Findings and implications are discussed for further studies.

  • PDF

Feasibility Study on Recycling of Concrete Waste from NPP Decommissioning Through Literature Review (기존 문헌 분석을 통한 원전 콘크리트 해체 폐기물 재활용 가능성에 대한 연구)

  • Cheon, Ju-Hyun;Lee, Seong-Cheol;Kim, Chang-Lak;Park, Hong-Gi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • In this paper, the feasibility of recycling concrete waste as a method to reduce final disposal amount of wastes generated through decommissioning of nuclear power plant has been analyzed based on experimental results of existing literature. When recycled concrete waste was used as recycled aggregate, it was investigated through literature that the concrete strength decreased by 30~40% depending on the mixing ratio. It was also investigated that concrete with recycled aggregate can be used as a structural material when the quality of recycled aggregate is well managed since no significant problem was found. When recycled cement produced from concrete waste was used, the strength of concrete or mortar decreased considerably as the recycled cement content increased. Therefore, it can be concluded that concrete or mortar with recycled cement can be used as a filling material for final disposal of large radioactive waste rather than for structural use. This paper is expected to be useful for reduction on disposal volume and decommissioning cost for nuclear power plants such as Kori 1.

Verification of MCNP/ORIGEN-2 Model and Preliminary Radiation Source Term Evaluation of Wolsung Unit 1 (월성 1호기 MCNP/ORIGEN-2 모델 검증 및 예비 선원항 계산)

  • Noh, Kyoungho;Hah, Chang Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.21-34
    • /
    • 2015
  • Source term analysis should be carried out to prepare the decommissioning of the nuclear power plant. In the planning phase of decommissioning, the classification of decommissioning wastes and the cost evaluation are performed based on the results of source term analysis. In this study, the verification of MCNP/ORIGEN-2 model is carried out for preliminary source term calculation for Wolsung Unit 1. The inventories of actinide nuclides and fission products in fuel bundles with different burn-up were obtained by the depletion calculation of MCNPX code modelling the single channel. Two factors affecting the accuracy of source terms were investigated. First, the neutron spectrum effect on neutron induced activation calculation was reflected in one-group microscopic cross-sections of relevant radio-isotopes using the results of MCNP simulation, and the activation source terms calculated by ORIGEN-2 using the neutron spectrum corrected library were compared with the results of the original ORIGEN-2 library (CANDUNAU.LIB) in ORIGEN-2 code package. Second, operation history effect on activation calculation was also investigated. The source terms on both pressure tubes and calandria tubes replaced in 2010 and calandria tank were evaluated using MCNP/ORIGEN-2 with the neutron spectrum corrected library if the decommissioning wastes can be classified as a low level waste.

A Study on the Application of EXPERT-CHOICE Technique for Selection of Optimal Decontamination Technology for Nuclear Power Plant of Decommissioning (원전 해체 시 최적 제염기술 선정을 위한 EXPERT-CHOICE 기법 적용에 대한 연구)

  • Song, Jong Soon;Shin, Seung Su;Lee, Sang Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.231-237
    • /
    • 2017
  • The present study researched and analyzed decontamination technology for decommissioning a nuclear power plant. The decision-making technique (EXPERT-CHOICE) was used to evaluate and select the optimal decontamination technology. In principle, this evaluation method is generally performed by a group of experts in the relevant field. The results of the weights were calculated by multiplying the weights with regard to each criterion and evaluation score. The evaluation scores were categorized into 3 ranges (high, medium, and low), and each range was weighted for differentiation. The level of the technology analysis was improved by additionally quantifying the weights with regard to each criterion and subdividing criteria into subcriteria. The basic assumption of the evaluation was that the weight values would decided on in an expert survey and assigned to each criterion. The evaluation criteria followed high weight for the 'High' range. Accordingly, H, M, and L were assigned weights of 10:5:1, respectively. This was based on the EXPERT-CHOICE optimal analysis. The minimum and maximum values were excluded, and the average value was used as the evaluation value for each scenario.

Preliminary Radiation Exposure Dose Evaluation for Workers of the Landfill Disposal Facility Considering the Radiological Characteristics of Very Low Level Concrete and Metal Decommissioning Wastes (극저준위 콘크리트, 금속 해체방폐물의 방사선적 특성을 고려한 매립형 처분시설 방사선작업자 예비 피폭선량 평가)

  • Ho-Seog Dho;Ye-Seul Cho;Hyun-Goo Kang;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.509-518
    • /
    • 2023
  • The Kori Unit 1 nuclear power plant, which is planned to be dismantled after permanent shutdown, is expected to generate a large amount of various types of radioactive waste during the dismantling process. For the disposal of Very-low-level waste, which is expected to account for the largest amount of generation, the Korea Radioactive waste Agency (KORAD) is in the process of detailed design to build a 3-phase landfill disposal facility in Gyeongju. In addition, a large container is being developed to efficiently dispose of metal and concrete waste, which are mainly generated as Very low-level waste of decommissioning. In this study, based on the design characteristics of the 3-phase landfill disposal facility and the large container under development, radiation exposure dose evaluation was performed considering the normal and accident scenarios of radiation workers during operation. The direct exposure dose evaluation of workers during normal operation was performed using the MCNP computer program, and the internal and external exposure dose evaluation due to damage to the decommissioning waste package during a drop accident was performed based on the evaluation method of ICRP. For the assumed scenario, the exposure dose of worker was calculated to determine whether the exposure dose standards in the domestic nuclear safety act were satisfied. As a result of the evaluation, it was confirmed that the result was quite low, and the result that satisfied the standard limit was confirmed, and the radiational disposal suitability for the 3-phase landfill disposal facility of the large container for dismantled radioactive waste, which is currently under development, was confirmed.