• Title/Summary/Keyword: Nuclear Model Calculation

Search Result 286, Processing Time 0.027 seconds

Quantitation of Intracardiac Right-to-Left Shunt by Radionuclide Angiocardiography (방사성동위원소 심혈관촬영술을 이용한 우-좌단락의 정량화에 관한 연구)

  • Bom, Hee-Seung;Lim, Sang-Moo;Oh, Yeon-Sang;Kim, Byung-Tae;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Lee, Young-Woo;Yun, Yong-Soo;Hong, Chang-Yee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.20 no.2
    • /
    • pp.47-52
    • /
    • 1986
  • A noninvasive procedure for diagnosis and quantitation of right-to-left intracardiac shunts will enhance the management of patients with cyanotic congenital heart disease. This study describes an application of radionuclide (RN) angiocardiography for quantitation of right-to-left shunt amount. Gamma variate model was fitted to radionuclide data recorded over the carotid artery. Data analysis was performed retrospectively in 35 patients who underwent cardiac catheterization within a week from the day of RN angiocardiography. Thirty one of the patient had right-to-left shunts and 4 of them had left-to-right shunts. Both the radionuclide and Fick measurements correlated well (r=0.93, 0.93, 0.89, p<0.01 in each measurements). Therefore, RN angiocardiography data may be used for accurate calculation of right-to-left shunts in cyanotic congenital heart disease patients.

  • PDF

Nonlinear Soil-Structure Interaction Analysis of a Seismically Isolated Nuclear Power Plant Structure using the Boundary Reaction Method (경계반력법을 이용한 지진격리 원전구조물의 비선형 지반-구조물 상호작용 해석)

  • Lee, Eun-Haeng;Kim, Jae-Min;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • This paper presents a detailed procedure for a nonlinear soil-structure interaction of a seismically isolated NPP(Nuclear Power Plant) structure using the boundary reaction method (BRM). The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. For the purpose of calculating the boundary reaction forces at the base of the isolator, the KIESSI-3D program is employed in this study to solve soil-foundation interaction problem subjected to vertically incident seismic waves. Wave radiation analysis is also employed, in which the nonlinear structure and the linear soil region are modeled by finite elements and energy absorbing elements on the outer model boundary using a general purpose nonlinear FE program. In this study, the MIDAS/Civil program is employed for modeling the wave radiation problem. In order to absorb the outgoing elastic waves to the unbounded soil region, spring and viscous-damper elements are used at the outer FE boundary. The BRM technique utilizing KIESSI-3D and MIDAS/Civil programs is verified using a linear soil-structure analysis problem. Finally the method is applied to nonlinear seismic analysis of a base-isolated NPP structure. The results show that BRM can effectively be applied to nonlinear soil-structure interaction problems.

3-Dimensional Analysis of the Steam-Hydrogen Behavior from a Small Break Loss of Coolant Accident in the APR1400 Containment

  • Kim Jongtae;Hong Seong-Wan;Kim Sang-Baik;Kim Hee-Dong;Lee Unjang;Royl P.;Travis J. R.
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.24-35
    • /
    • 2004
  • In order to analyze the hydrogen distribution during a severe accident in the APR1400 containment, GASFLOW II was used. For the APR1400 NPP, a hydrogen mitigation system is considered from the design stage, but a fully time-dependent, three-dimensional analysis has not been performed yet. In this study GASFLOW code II is used for the three-dimensional analysis. The first step to analysis involving hydrogen behavior in a full containment with the GASLOW code is to generate a realistic geometry model, which includes nodalization and modeling of the internal structures such as walls, ceilings and equipment. Geometry modeling of the APR1400 is conducted using GUI program by overlapping the containment cut drawings in a graphical file format on the mesh view. The total number of mesh cells generated is 49,476. And the calculated free volume of the APR1400 containment by GASFLOW is almost the same as the value from the GOTHIC modeling. A hypothetical SB-LOCA scenario beyond design base accident was selected to analyze the hydrogen behavior with the hydrogen mitigation system. The source of hydrogen and steam for the GASFLOW II analysis is obtained from a MAAP calculation. Combustion pressure and temperature load possibilities within the compartments used in the GOTHIC analysis are studied based on the Sigma-Lambda criteria. Finally the effectiveness of HMS installed in the APR1400 containment is evaluated from the point of severe accident management

Calculation of Internal Exposure Dose in Korean Man Resulting from Single and Chronic Intake of Tritium (트리튬($^{3}H$)의 단일(單一) 및 만성섭취(晩性攝取)에 대한 한국인(韓國人)의 내부피복(內部被曝) 선량(線量) 계산(計算))

  • Kim, Jang-Lyul;Yook, Chong-Chul;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.8 no.2
    • /
    • pp.8-14
    • /
    • 1983
  • The doses to Korean adult by a single and chronic intake of tritiated water are determined using a three compartment model, which describes the retention of tritium radionuclide in body water and in bound organic form in the body. The results show that the total dose of a single intake, using retention half-time for the three-compartment of 9, 30, and 450 days, is 17.64 mrads ($176.4{\mu}Gy$) per 1mCi/kg ($3.7{\times}10^7Bq/kg$) intake, 97% of which is due to tritium in body water and 3% to bound tritium in tissue. In the chronic intake of 1mCi/day($3.7{\times}10^7Bq/day$) tritiated water, the total dose is 85.5 mrad/day(0.855mGy/day). Furthermore, in this study (MPC) a and (MPC)w values of tritium for Korean man are calculated by using the modified formula originated from ICRP Publication-2. From the results, we found that the (MPC) a, w values of ICRP underestimated approximately 50%, the (MPC)a, w values of Korean man must be elevated as high as approximately 50% than that of ICRP.

  • PDF

A Study on Residual Stress Analysis of Autofrettaged Thick-walled Cylinders (자긴가공된 후육실린더의 잔류응력 해석에 관한 연구)

  • Kim, Jae-Hoon;Shim, Woo-Sung;Lee, Young-Shin;Cha, Ki-Up;Hong, Suck-Kyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.110-116
    • /
    • 2009
  • Thick-walled cylinders, such as a cannon or nuclear reactor, are autofrettaged to induce advantageous residual stresses into pressure vessels and to increase operating pressure and the fatigue lifetimes. As the autofrettage level increases, the magnitude of compressive residual stress at the bore also increases. However, the Bauschinger effect reduces the compressive residual stresses as a result of prior tensile plastic strain, and decreases the beneficial autofrettage effect. The purpose of the present paper is to predict the accurate residual stress of SNCM8 high strength steel using the Kendall model which was adopted by ASME Code. The uniaxial Bauschinger effect test was performed to decide BEF, then this constant was used in calculation. There were some differences between theoretical solution and modified solution.

Consideration on the Electromagnetic Wave Absorption Properties of the Plasma for the Stealth Technology (은신기술을 위한 플라즈마의 전자기파 흡수 특성에 대한 고찰)

  • In, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.501-510
    • /
    • 2008
  • The stealth technology to conceal an aircraft from the vision of a radar have been accomplished by coating the surface with special paints absorbing the electromagnetic wave. Nowadays, researches to utilize characteristics of the plasma-wave interaction for realizing the stealth technology are actively progressed. In this paper, to investigate the physical feasibility of the plasma stealth, calculation results for the required conditions of the plasma cloaking on the aircraft flying in the air for showing the stealth function, using a flat non-magnetized non-uniform plasma model, are reported and discussed.

Demonstration of the Effectiveness of Monte Carlo-Based Data Sets with the Simplified Approach for Shielding Design of a Laboratory with the Therapeutic Level Proton Beam

  • Lai, Bo-Lun;Chang, Szu-Li;Sheu, Rong-Jiun
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Background: There are several proton therapy facilities in operation or planned in Taiwan, and these facilities are anticipated to not only treat cancer but also provide beam services to the industry or academia. The simplified approach based on the Monte Carlo-based data sets (source terms and attenuation lengths) with the point-source line-of-sight approximation is friendly in the design stage of the proton therapy facilities because it is intuitive and easy to use. The purpose of this study is to expand the Monte Carlo-based data sets to allow the simplified approach to cover the application of proton beams more widely. Materials and Methods: In this work, the MCNP6 Monte Carlo code was used in three simulations to achieve the purpose, including the neutron yield calculation, Monte Carlo-based data sets generation, and dose assessment in simple cases to demonstrate the effectiveness of the generated data sets. Results and Discussion: The consistent comparison of the simplified approach and Monte Carlo simulation results show the effectiveness and advantage of applying the data set to a quick shielding design and conservative dose assessment for proton therapy facilities. Conclusion: This study has expanded the existing Monte Carlo-based data set to allow the simplified approach method to be used for dose assessment or shielding design for beam services in proton therapy facilities. It should be noted that the default model of the MCNP6 is no longer the Bertini model but the CEM (cascade-exciton model), therefore, the results of the simplified approach will be more conservative when it was used to do the double confirmation of the final shielding design.

Radiation Shielding Analysis on The Spent Fuel Storage Facility for the Extended Fuel Cycle (장주기(長週期) 핵연료(核燃料) 저장시설(貯藏施設)에서의 방사선차폐해석(放射線遮蔽解析))

  • Lee, Tae-Young;Ha, Chung-Woo;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.90-96
    • /
    • 1984
  • Estimated dose rates in spent fuel pool storage with the extended fuel cycle core management were reviewed and compared with design limit after calculation with the aid of DLC-23/CASK(22 n, 18 g) nuclear data and ANISN code. Radioactivity and gamma spectrum within spent fuel assemblies were calculated with ORIGEN code by extended fuel cycle model. In the calculation of dose rate, the fuel pool geometry was assumed to be infinite slab. Also, composition materials and radiation source within assemblies which are being stored in pool storage were assumed to be uniformly distributed throughout all the assemblies. As a result of culculation of dose rate from stored assemblies and waterborne radionuclides in pool water, the calculated dose rates appear to be lower than design basis limit under normal condition as well as abnormal condition.

  • PDF

Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System (고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석)

  • Park Jeong-Hwa;Lee Jae-Owan;Kwon Sang-Ki;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.117-131
    • /
    • 2006
  • A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at $90^{\circ}C$ at the interface between the heater and the bentonite and at about $70^{\circ}C$ at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.

  • PDF

A Chemical Reaction Calculation and a Semi-Empirical Model for the Dynamic Simulation of an Electrolytic Reduction of Spent Oxide Fuels (산화물 사용후핵연료 전해환원 화학 반응 계산 및 동적 모사를 위한 반실험 모델)

  • Park, Byung-Heung;Hur, Jin-Mok;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.19-32
    • /
    • 2010
  • Electrolytic reduction technology is essential for the purpose of adopting pyroprocessing into spent oxide fuel as an alternative option in a back-end fuel cycle. Spent fuel consists of various metal oxides, and each metal oxide releases an oxygen element depending on its chemical characteristic during the electrolytic reduction process. In the present work, an electrolytic reduction behavior was estimated for voloxidized spent fuel based on the assumption that each metal-oxygen system is independent and behaves as an ideal solid solution. The electrolytic reduction was considered as a combination of a Li recovery and chemical reactions between the metal oxides such as uranium oxide and the produced Li metal. The calculated result revealed that most of the metal oxides were reduced by the process. It was evaluated that a reduced fraction of lanthanide oxides increased with a decreasing $Li_2O$ concentration. However, most of the lanthanides were expected to be stable in their oxide forms. In addition, a semi-empirical model for describing $U_3O_8$ electrolytic reduction behavior was proposed by considering Li diffusion and a chemical reaction between $U_3O_8$ and Li. Experimental data was used to determine model parameters and, then, the model was applied to calculate the reduction yield with time and to estimate the required time for a 99.9% reduction.