• 제목/요약/키워드: Nuclear Factor Kappa B ($NF-{\kappa}B$)

검색결과 798건 처리시간 0.026초

Diethyldithiocarbamate Suppresses an NF-κB Dependent Metastatic Pathway in Cholangiocarcinoma Cells

  • Srikoon, Pattaravadee;Kariya, Ryusho;Kudo, Eriko;Goto, Hiroki;Vaeteewoottacharn, Kulthida;Taura, Manabu;Wongkham, Sopit;Okada, Seiji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4441-4446
    • /
    • 2013
  • Cholangiocarcinoma (CCA) is a tumor of biliary ducts, which has a high mortality rate and dismal prognosis. Constitutively activation of the transcription factor nuclear factor kappa-B (NF-${\kappa}B$) has been previously demonstrated in CCA. It is therefore a potential target for CCA treatment. Effects of diethyldithiocarbamate (DDTC) on NF-${\kappa}B$-dependent apoptosis induction in cancer have been reported; however, anti-metastasis has never been addressed. Therefore, here the focus was on DDTC effects on CCA migration and adhesiond. Anti-proliferation, anti-migration and anti-adhesion activities were determined in CCA cell lines, along with p65 protein levels and function. NF-${\kappa}B$ target gene expression was determined by quantitative RT-PCR. DDTC inhibited CCA cell proliferation. Suppression of migration and adhesion were observed prior to anti-CCA proliferation. These effects were related to decreased p65, reduction in NF-${\kappa}B$ DNA binding, and impaired activity. Moreover, suppression of ICAM-1 expression supported NF-${\kappa}B$-dependent anti-metastatic effects of DDTC. Taken together, DDTC suppression of CCA migration and adhesion through inhibition of NF-${\kappa}B$ signaling pathway is suggested from the current study. This might be a promising treatment choice against CCA metastasis.

RAW 264.7 세포에서 음양곽(淫羊藿) 물 추출물의 nuclear factor-κB 억제를 통한 항염증 효과 (Anti-inflammatory Effects of Epimedii Herba Water Extract through Inhibition of Nuclear Factor-κB in RAW 264.7 Cells)

  • 정지윤;변성희;박정아;조일제;김상찬
    • 대한본초학회지
    • /
    • 제33권2호
    • /
    • pp.19-28
    • /
    • 2018
  • Objectives : Epimedii Herba has been frequently used in Korean Traditional Medicine to treat impotence, spermatorrhoea, exophthalmos, and forgetfulness. Present study investigated anti-inflammatory effects of Epimedii Herba water extract (EWE) and attempted to elucidate molecular mechanisms involved. Methods : To explore anti-inflammatory effects of EWE, RAW 264.7 cells, a murine macrophage cell line, were pretreated with $10-100{\mu}g/m{\ell}$ of EWE, and then subsequently exposed to $1{\mu}g/m{\ell}$ of lipopolysaccharide (LPS). Levels of nitric oxide (NO), interleukin-6, $interleukin-1{\beta}$, and tumor necrosis $factor-{\alpha}$ were monitored in the medium. Expression levels of inducible nitric oxide synthase and cyclooxygenase-2 were determined by immunoblot and real-time PCR analyses. Signaling pathways related with nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) and mitogen-activated protein kinases were monitored to elucidate molecular mechanisms involved. Finally, the role of three flavonoid compounds in EWE on LPS-mediated NO production were investigated. Results : In conditioned medium, pretreatment of EWE ($100{\mu}g/m{\ell}$) significantly inhibited LPS-stimulated NO and pro-inflammatory cytokine production. In addition, EWE attenuated the expressions of inducible nitric oxide synthase and cyclooxygenase-2 by LPS. EWE prevented the phosphorylation and degradation of inhibitory ${\kappa}B{\alpha}$, nuclear translocation of $NF-{\kappa}B$, and DNA binding of $NF-{\kappa}B$, while EWE did not change the phosphorylation of mitogen-activated protein kinases by LPS. Moreover, icariin, icaritin, and quercetin partly, but significantly, inhibited the LPS-stimulated NO production. Conclusions : These results suggest that EWE has an ability to prevent inflammation in macrophages through inhibition of $NF-{\kappa}B$ signaling pathway.

Tussilagone suppressed the production and gene expression of MUC5AC mucin via regulating nuclear factor-kappa B signaling pathway in airway epithelial cells

  • Choi, Byung-Soo;Kim, Yu-jin;Yoon, Yong Pill;Lee, Hyun Jae;Lee, Choong Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.671-677
    • /
    • 2018
  • In the present study, we investigated whether tussilagone, a natural product derived from Tussilago farfara, significantly affects the production and gene expression of airway MUC5AC mucin. Confluent NCI-H292 cells were pretreated with tussilagone for 30 min and then stimulated with EGF (epidermal growth factor) or PMA (phorbol 12-myristate 13-acetate) for 24 h or the indicated periods. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. To elucidate the action mechanism of tussilagone, effect of tussilagone on PMA-induced $NF-{\kappa}B$ signaling pathway was investigated by western blot analysis. Tussilagone significantly inhibited the production of MUC5AC mucin protein and down-regulated the expression of MUC5AC mucin gene, induced by EGF or PMA. Tussilagone inhibited PMA-induced activation (phosphorylation) of inhibitory kappa B kinase (IKK), and thus phosphorylation and degradation of inhibitory kappa Ba ($I{\kappa}B{\alpha}$). Tussilagone inhibited PMA-induced phosphorylation and nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. These results suggest that tussilagone can regulate the production and gene expression of mucin by acting on airway epithelial cells through regulation of $NF-{\kappa}B$ signaling pathway.

Downregulation of $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation in human keratinocytes by melanogenic inhibitors

  • Ahn, Kwang-Seok;Lee, Jinseon;Kim, Yeong-Shik
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.780-803
    • /
    • 2003
  • Exposure of skin cells, particularly keratinocytes to various nuclear factor-kappaB ($\textrm{NF}_{-{\kappa}}\textrm{B}$) activators [e.g. tumor necrosis factor-$\alpha$, interleukin-1, lipopolysaccharides, and ultraviolet light] leads to phosphorylation and degradation of the inhibitory protein, $\textrm{I}_{{\kappa}}\textrm{B}$. Liberated $\textrm{NF}_{-{\kappa}}\textrm{B}$ is translocated into the nucleus where it can change or alter expression of target genes, resulting in the secretion of extracellular signaling molecules including melanotrophic factors affecting melanocyte. In order to demonstrate the possible role of $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation on the synthesis of melanotrophic factors from the keratinocytes, the activities of $\textrm{NF}_{-{\kappa}}\textrm{B}$ induced by melanogenic inhibitors (MIs) were determined in human HaCaT keratinocytes transfected with $\textrm{pNF}_{-{\kappa}}\textrm{B}$-SEAP-NPT plasmid. Transfectant cells released the secretory alkaline phosphatase (SEAP) as a transcription reporter in response to the $\textrm{NF}_{-{\kappa}}\textrm{B}$ activity and contain the neomycin phosphotransferase (NPT) gene for the dominant selection marker for geneticin resistance. MIs such as niacinamide, kojic acid, hydroquinone, resorcinol, arbutin, and glycolic acid were preincubated with transfectant HaCaT cells for 3 h and then ultraviolet B (UVB) was irradiated. $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation was measured with the SEAP reporter gene assay using a fluorescence detection method. Of the Mis tested, kojic acid ($IC_{50}$/ = 60 $\mu$M) was found to be the most potent inhibitor of UVB-upregulating $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation in transfectant HaCaT cells, which is followed by niacinamide ($IC_{50}$/= 540 $\mu$M). Pretreatment of the transfectant HaCaT cells with the Mis, especially kojic acid and niacinamide, effectively lowered $\textrm{NF}_{-{\kappa}}\textrm{B}$ binding measured by electrophoretic mobility shift assay. Furthermore, these two inhibitors remarkably reduced the secretion level of IL-6, one of melanotrophic factors, triggered by UV-radiation of the HaCaT cells. These observations suggest that Mis working at the in vivo level might act partially through the modulation of the synthesis of melanotrophic factors in keratinocyte.

  • PDF

미세조류 유래 astaxanthin의 항염증 및 항산화 효과 (Anti-Inflammatory and Antioxidant Effect of Astaxanthin Derived from Microalgae)

  • 곽태원;차지영;이철원;김영민;유병홍;김성구;김종명;박성하;안원근
    • 생명과학회지
    • /
    • 제21권10호
    • /
    • pp.1377-1384
    • /
    • 2011
  • Astaxanthin (ATX)은 다양한 생명체에서 생성되는 카로티노이드 색소이다. 본 연구에서는 ATX가 RAW264.7 cell에서 LPS에 의한 inducible nitric oxide synthase (iNOS), nitric oxide (NO), 염증성 사이토카인, nuclear factor-kappa B (NF-${\kappa}B$)와 reactive oxygen species (ROS)의 생성을 억제 시키는 지 또한, superoxide radical 소거능이 있는 지를 조사하였다. iNOS와 NF-${\kappa}B$는 immunoblot analysis로, interleukin (IL)-6와 tumour necrosis factor-${\alpha}$ (TNF-${\alpha}$)는 ELISA 법으로 분석하였다. NO 양은 nitrite의 양을 측정하였고, ROS는 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA) 법으로 superoxide radical 소거능은 superoxide radical scavenging activity assay로 검증하였다. 100 ${\mu}M$의 ATX 농도에서 LPS로 유도된 NO, IL-6 및 TNF-${\alpha}$ 같은 염증성 사이토카인의 생성 뿐만 아니라 iNOS 및 NF-${\kappa}B$의 발현도 억제되었다. 특히, IL-6 및 TNF-${\alpha}$ 생성에 있어 ATX의 최대 억제율은 각각 65.2% 및 21.2% 이었으며 LPS로 유도된 NF-${\kappa}B$의 전사활성을 억제하였다. 이러한 현상은 세포질에서 핵으로 NF-${\kappa}B$의 전위를 억제하는 것과 관련이 있다. 또한, 25-100 ${\mu}M$의 ATX 농도에서 세포 내 ROS 생성을 억제하였으며, 5 mg/ml 농도의 ATX는 동일농도의 ${\alpha}$-tocopherol에 비해 superoxide radical 소거능이 1.33배 높았다. 이러한 결과들은 ATX가 대식세포에서 ROS 생성 및 NF-${\kappa}B$ 활성을 저해하므로 iNOS의 발현, NO 및 염증성 사이토카인의 생성을 억제하며, 또한 우수한 superoxide radical 소거능을 보유한다는 것을 나타내었다. 결론적으로, ATX가 항염증제 및 항산화제로서 유용하게 사용될 수 있을 것으로 사료된다.

Inhibition of TNF-α-mediated NF-κB Transcriptional Activity in HepG2 Cells by Dammarane-type Saponins from Panax ginseng Leaves

  • Song, Seok-Bean;Tung, Nguyen Huu;Quang, Tran Hong;Ngan, Nguyen Thi Thanh;Kim, Kyoon-Eon;Kim, Young-Ho
    • Journal of Ginseng Research
    • /
    • 제36권2호
    • /
    • pp.146-152
    • /
    • 2012
  • Panax ginseng (PG) is a globally utilized medicinal herb. The medicinal effects of PG are primarily attributable to ginsenosides located in the root and leaf. The leaves of PG are known to be rich in various bioactive ginsenosides, and the therapeutic effects of ginseng extract and ginsenosides have been associated with immunomodulatory and anti-inflammatory activities. We examined the effect of PG leaf extract and the isolated ginsenosides, on nuclear factor (NF)-${\kappa}B$transcriptional activity and target gene expression by applying a luciferase assay and reverse transcription polymerase chain reaction in tumor necrosis factor (TNF)-${\alpha}$-treated hepatocarcinoma HepG2 cells. Air-dried PG leaf extract inhibited TNF-${\alpha}$-induced NF-${\kappa}B$transcription activity and NF-${\kappa}B$-dependent cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) gene expression more efficiently than the steamed extract. Of the 10 ginsenosides isolated from PG leaves, Rd and Km most significantly inhibited activity in a dose-dependent manner, with $IC_{50}$ values of $12.05{\pm}0.82$ and $8.84{\pm}0.99\;{\mu}M$, respectively. Furthermore, the ginsenosides Rd and Km inhibited the TNF-${\alpha}$-induced expression levels of the COX-2 and iNOS gene in HepG2 cells. Air-dried leaf extracts and their chemical components, ginsenoside Rd and Km, are involved in the suppression of TNF-${\alpha}$-induced NF-${\kappa}B$ activation and NF-${\kappa}B$-dependent iNOS and COX-2 gene expression. Consequently, air-dried leaf extract from PG, and the purified ginsenosides, have therapeutic potential as anti-inflammatory.

Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation

  • Park, Jin Hee;Lee, Na Kyung;Lee, Soo Young
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.706-713
    • /
    • 2017
  • Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptorassociated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 (AP-1). Activated NF-${\kappa}B$ induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces $Ca^{2+}$ oscillation via activated phospholipase $C{\gamma}2$ ($PLC{\gamma}2$) together with c-Fos/AP-1, wherein $Ca^{2+}$ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.

Sodium Salicylate Inhibits Expression of COX-2 Through Suppression of ERK and Subsequent $NF-{\kappa}B$ Activation in Rat Ventricular Cardiomyocytes

  • Kwon, Keun-Sang;Chae, Han-Jung
    • Archives of Pharmacal Research
    • /
    • 제26권7호
    • /
    • pp.545-553
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation, which can be inhibited with sodium salicylate. IL-1$\beta$ and TNF-$\alpha$ can induce extracellular signal-regulated kinase (ERK), IKK, IkB degradation and NF-$\kappa$B activation. Salicylate inhibited the IL-1$\beta$ and TNF-$\alpha$-induced COX-2 expressions, regulated the activation of ERK, IKK and IkB degradation, and the subsequent activation of NF-$\kappa$B, in neonatal rat ventricular cardiomyocytes. The inhibition of the ERK pathway, with a selective inhibitor, PD098059, blocked the expressions of IL-1$\beta$ and TNF-$\alpha$-induced COX-2 and $PGE_2$ release. The antioxidant, N-acetyl-cysteine, also reduced the glutathione or catalase- attenuated COX-2 expressions in IL-1$\beta$ and TNF-$\alpha$-treated cells. This antioxidant also inhibited the activation of ERK and NF-$\kappa$B in neonatal rat cardiomyocytes. In addition, IL-1$\beta$ and TNF-$\alpha$-stimulated the release of reactive oxygen species (ROS) in the cardiomyocytes. However, salicylate had no inhibitory effect on the release of ROS in the DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, I$\kappa$B degradation and NF-$\kappa$B activation, independently of the release of ROS, which suggested that salicylate exerts its anti-inflammatory action through the inhibition of ERK, IKK, IkB and NF-$\kappa$B, and the resultant COX-2 expression pathway in neonatal rat ventricular cardiomyocytes.

Artemisolide from Artemisia asiatica: Nuclear $Factor-{\kappa}B\;(NF-{\kappa}B)$ Inhibitor Suppressing Prostaglandin $E_2$ and Nitric Oxide Production in Macrophages

  • Reddy, Alavala Matta;Lee, Jun-Young;Seo, Jee-Hee;Kim, Byung-Hak;Chung, Eun-Yong;Ryu, Shi-Yong;Kim, Young-Sup;Lee, Chong-Kil;Min, Kyung-Rak;Kim, Young-Soo
    • Archives of Pharmacal Research
    • /
    • 제29권7호
    • /
    • pp.591-597
    • /
    • 2006
  • Aerial parts of Artemisia asiatica (Compositae) have been traditionally used as an oriental medicine for the treatment of inflammatory and ulcerogenic diseases. In the present study, artemisolide was isolated as a nuclear factor $(NF)-{\kappa}B$ inhibitor from A. asiatica by activity-guided fractionation. Artemisolide inhibited $NF-{\kappa}B$ transcriptional activity in lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7 with an $IC_{50}$ value of $5.8\;{\mu}M$. The compound was also effective in blocking $NF-{\kappa}B$ transcriptional activities elicited by the expression vector encoding the $NF-{\kappa}B$ p65 or p50 subunits bypassing the inhibitory kB degradation signaling $NF-{\kappa}B$ activation. The macrophages markedly increased their $PGE_2$ and NO production upon exposure to LPS alone. Artemisolide inhibited LPS-induced $PGE_2$ and NO production with $IC_{50}$ values of $8.7\;{\mu}M$ and $6.4\;{\mu}M$, respectively, but also suppressed LPS-induced synthesis of cyclooxygenase (COX)-2 or inducible NO synthase (iNOS). Taken together, artemisolide is a $NF-{\kappa}B$ inhibitor that attenuates LPS-induced production of $PGE_2$ or NO via down-regulation of COX-2 or iNOS expression in macrophages RAW 264.7. Therefore, artemisolide could represent and provide the anti-inflammatory principle associated with the traditional medicine, A. asiatica.

Anti-inflammatory Activity of the Methanol Extract from the Stem of Coriandrum Sativum in RAW 264.7 Cells

  • Jung, Ji Yun;Park, Chung A
    • 대한본초학회지
    • /
    • 제33권5호
    • /
    • pp.73-79
    • /
    • 2018
  • Objectives : Coriandrum sativum is a medicinal herb that is used to enhance organoleptic quality and food flavor and as source of natural antioxidants. This research investigated the anti-inflammatory activity of Coriandrum sativum stem methanol extract (CSSE) using RAW 264.7 cells. Methods : Production of tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin (IL)-$1{\beta}$, IL-6, and nitric oxide (NO) in the culture supernatant, protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-${\kappa}B$) in the extract were assayed. Results : Treatment with CSSE ($100{\mu}g/m{\ell}$) resulted in inhibited levels of protein expression of lipopolysaccharide- (LPS-) induced iNOS, COX-2, and NF-${\kappa}B$ as well as production of TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and NO induced by LPS. Conclusions : These results demonstrate that CSSE exhibits anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the pathways of NF-${\kappa}B$ in LPS-induced RAW 264.7 cells. Thus, CSSE may have therapeutic potential for a variety of inflammation-mediated diseases.