• 제목/요약/키워드: Nuclear Factor Kappa B ($NF-{\kappa}B$)

검색결과 798건 처리시간 0.025초

Sulforaphane Inhibits Osteoclastogenesis by Inhibiting Nuclear Factor-κB

  • Kim, Soo-Jin;Kang, So-Young;Shin, Hyun-Hee;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.364-370
    • /
    • 2005
  • We show that sulforaphane inhibits osteoclastogenesis in the presence of macrophage colony-stimulating factor (M-CSF) and receptor for activation of nuclear factor-${\kappa}B$ ligand (RANKL) in osteoclast (OC) precursors. Sulforaphane, an aliphatic isothiocyanate, is a known cancer chemo-preventative agent with anti-oxidative properties. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$) is a critical transcription factor in RANKL-induced osteoclastogenesis, and electrophoretic mobility shift assays (EMSAs) and assay of NF-${\kappa}B$-mediated secreted alkaline phosphatase (SEAP) revealed that sulforaphane selectively inhibited NF-${\kappa}B$ activation induced by RANKL. Inhibition may involve interaction of sulforaphane with thiol groups, since it was prevented by reducing agents.

NF-κB and Therapeutic Approach

  • Lee, Chang-Hoon;Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • 제17권3호
    • /
    • pp.219-240
    • /
    • 2009
  • Since NF-${\kappa}B$ has been identified as a transcription factor associated with immune cell activation, groups of researchers have dedicated to reveal detailed mechanisms of nuclear factor of ${\kappa}B$ (NF-${\kappa}B$) in inflammatory signaling for decades. The various molecular components of NF-${\kappa}B$ transcription factor pathway have been being evaluated as important therapeutic targets due to their roles in diverse human diseases including inflammation, cystic fibrosis, sepsis, rheumatoid arthritis, cancer, atherosclerosis, ischemic injury, myocardial infarction, osteoporosis, transplantation rejection, and neurodegeneration. With regards to new drugs directly or indirectly modulating the NF-${\kappa}B$ pathway, FDA recently approved a proteasome inhibitor bortezomib for the treatment of multiple myeloma. Many pharmaceutical companies have been trying to develop new drugs to inhibit various kinases in the NF-${\kappa}B$ signaling pathway for many therapeutic applications. However, a gene knock-out study for $IKK{\beta}$ in the NF-${\kappa}B$ pathway has given rise to controversies associated with efficacy as therapeutics. Mice lacking hepatocyte $IKK{\beta}$ accelerated cancer instead of preventing progress of cancer. However, it is clear that pharmacological inhibition of $IKK{\beta}$ appears to be beneficial to reduce HCC. This article will update issues of the NF-${\kappa}B$ pathway and inhibitors regulating this pathway.

악액질 완화를 위한 안전한 Nuclear Factor-kappa B 전사인자 제어 물질 발굴 (Safe Nuclear Factor-kappa B Inhibitor for Cachexia Management)

  • 박정수
    • Journal of Korean Biological Nursing Science
    • /
    • 제14권2호
    • /
    • pp.129-138
    • /
    • 2012
  • Purpose: Cachexia is a complex metabolic syndrome associated with wasting of skeletal muscle which contributes to nearly one-third of all cancer deaths. Cachexia lowers the frequency of response to chemotherapy and radiation and ultimately can impact survival as well as quality of life during treatment. NF-kappa B is one of the most important molecular mediators of cachexia. In this study, therefore, possible candidates for inhibitors of NF-kappa B were searched. Methods: Amino acids that regulate cellular redox potential by adjusting the level of NAD/NADH ratio, such as aspartate, pyruvate, and isocitrate were selected. Results: Pyruvate effectively inhibited luciferase activity in TNF-stimulated 293T cells transfect with an NF-kB dependent luciferase reporter vector. Pyruvate also showed protective effect on muscle atrophy of differentiated C2C12 myocyte induced by TNF/IFN. Conclusion: We might be able to develop the nutritional management strategy for cancer cachexia patients with pyruvate supplementation.

Role of PI3-Kinase/Akt Pathway in the Activation of Etoposide-Induced $NF-{\kappa}B$ Transcription Factor

  • Choi Yong-Seok;Park Heon-Yong;Jeong Sun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.391-398
    • /
    • 2006
  • $NF-{\kappa}B$ is a transcription factor involved in the innate immunity against bacterial infection and inflammation. It is also known to render cells resistant to the apoptosis caused by some anticancer drugs. Such a chemoresistance of cancer cells may be related to the activation of $NF-{\kappa}B$ transcription factor; however, the mechanism of activation is not well understood. Here, we demonstrate that a chemotherapeutic agent, etoposide, independently stimulates the $I{\kappa}B{\alpha}$ degradation pathway and PI3-kinase/Akt signaling pathway: The classical $I{\kappa}B{\alpha}$ degradation pathway leads to the nuclear translocation and DNA binding of p65 subunit through $IKK{\beta}$ kinase, whereas the PI3-kinase/Akt pathway plays a distinct role in activating this transcription factor. The PI3-kinase/Akt pathway acts on the p50 subunit of the $NF-{\kappa}B$ transcription factor and enhances the DNA binding affinity of the p50 protein. It may also explain the role of the PI3-kinase/Akt pathway in the anti-apoptotic function of $NF-{\kappa}B$ during chemoresistance of cancer cells.

Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity

  • Dilshara, Matharage Gayani;Kang, Chang-Hee;Choi, Yung Hyun;Kim, Gi-Young
    • BMB Reports
    • /
    • 제48권10호
    • /
    • pp.559-564
    • /
    • 2015
  • We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-$\alpha$-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-$\alpha$-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-$\alpha$ significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-$\alpha$-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-$\alpha$-induced invasion of LNCaP cells. Compared to untreated controls, TNF-$\alpha$-stimulated LNCaP cells showed a significant increase in nuclear factor-${\kappa}B$ (NF-${\kappa}B$) luciferase activity. However, mangiferin treatment markedly decreased TNF-$\alpha$-induced NF-${\kappa}B$ luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-${\kappa}B$ subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-${\kappa}B$-mediated MMP-9 expression.

인체 폐암세포주에서 NF-$\kappa$B p50/p65 Complex의 활성화 (Activation of the NF-$\kappa$B p50/p65 Complex in Human Lung Cancer Cell Lines)

  • 최형석;유철규;이춘택;김영환;한성구;심영수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제46권2호
    • /
    • pp.185-194
    • /
    • 1999
  • 연구배경: NF-$\kappa$B는 단백질이 생성된 후의 변형(post-translational modification)과 세포내에서의 위치 변화(subcellular localization)에 따라 그 작용이 결정되는 특성을 가진 전사 인자로서 최초에는 면역반응에 있어 중요한 역할을 하는 사실이 알려졌으나 그후 이러한 작용이외에도 급성기 염증 반응, 바이러스의 증식, 세포의 발생과 분화에 있어 중요한 작용을 한다는 사실이 알려지게 되었다. 최근의 연구들에서 NF-$\kappa$B 전사 인자가 정상 세포로부터 암세포로의 형질전환에 있어서도 어떤 기능을 할 것이라는 사실들이 알려지게 되었다. NF-$\kappa$B가 암세포로의 형질 전환, 나아가 암세포의 생성에 어떤 역할을 제공한다면 이러한 사실은 나아가 향후의 암치료에 있어서도 유용한 지식이 될 수 있다. NF-$\kappa$B 전사 인자가 인체 암세포에 있어서 세포의 형질 변환에 연관될 수 있다는 사실은 몇몇 암종에서 알려져 있으나 폐암에서의 NF-$\kappa$B 전사 인자의 종양 생성기능에 있어서는 아직 연구된 바가 없다. 방 법: 본 연구에서는 배양된 인체 폐암세포주에 있어서 NF-$\kappa$B family 전사 인자들의 발현정도를 western blot를 이용하여 관찰하고 과발현된 NF-$\kappa$B 전사 인자의 세포내 위치가 세포핵인지 세포질내에 존재하는 것인지를 각각의 단백질 분획에서 western blot를 시행하여 관찰하였고 또한 immunocy-tochemistry를 시행하여 그 발현 양상을 확인하였다. 존재하는 NF-$\kappa$B 전사 인자가 어떠한 복합체의 형태인지를 알아보기 위하여 세포주의 단백 추출물에서 NF-$\kappa$B family 전사 인자에 대한 항체를 사용하여 immunoprecipitation을 시행하였다. 세포주 단백추출물의 $\kappa$B consensus oligonucleotide에의 결합여부를 보기위하여 electrophoretic mobility shift assay를 시행하였다. 결 과: 배양된 인체 폐암세포주에서는 NF-$\kappa$B family의 p50 subunit, p65 subunit가 발현되어 있었고 p50 subunit의 발현은 세포핵내에 국한하여 위치하고 있음을 western blot와 immunocytochemistry를 통하여 관찰할 수 있었다 immunoprecipitation assay는 세포내에서 p50 subunit가 p65 subunit와 복합체를 이루는 상태로 존재하고 있음을 보여주었다. 폐암세포주의 세포핵 추출물은 NF-$\kappa$B consensus oligonucleotide와 결합할 수 있음을 electrophoretic mobility shift assay를 통하여 확인할 수 있었다. 결 론: 인체 폐암세포주에서 NF-$\kappa$B family 전사 인자의 발현이 활성화되어 있으며 NF-$\kappa$B family 전사 영자가 인체 폐암 형성에 있어 어떤 역할을 할 가능성을 시사한다.

  • PDF

Guggulsterone Suppresses the Activation of NF-${\kappa}B$ and Expression of COX-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists

  • Ahn, Sang-Il;Youn, Hyung-Sun
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1294-1298
    • /
    • 2008
  • Toll-like receptors (TLRs) induce innate immune responses recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). The activation of NF-${\kappa}B$ leads to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Guggul has been used for centuries to treat a variety of diseases. Guggulstreone, one of the active ingredients in guggul, has been used to treat many chronic diseases. However, the mechanism as to how guggulsterone mediate the health effects is largely unknown. Here, we report biochemical evidence that guggulsterone inhibits the NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Guggulsterone also inhibits the NF-${\kappa}B$ activation induced by downstream signaling components of TLRs, myeloid differential factor 88 (MyD88), $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and p65. These results imply that guggulsterone can modulate the immune responses regulated by TLR signaling pathways.

Gliotoxin from the marine fungus Aspergillus fumigatus induces apoptosis in HT1080 fibrosarcoma cells by downregulating NF-κB

  • Kim, Young-Sang;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • 제19권9호
    • /
    • pp.35.1-35.6
    • /
    • 2016
  • Gliotoxin has been recognized as an immunosuppressive agent for a long time. Recently, it was reported to have antitumor properties. However, the mechanisms by which it inhibits tumors remain unclear. Here, we showed that gliotoxin isolated from the marine fungus Aspergillus fumigatus inhibited proliferation and induced apoptosis in HT1080 human fibrosarcoma cells. Gliotoxin repressed phosphorylation-dependent degradation of $I{\kappa}B-{\alpha}$, an antagonist of nuclear factor kappa B ($NF-{\kappa}B$), which is a known tumor-promoting factor. This coincided with a decrease in nuclear import of $NF-{\kappa}B$, suggesting its signaling activity was impaired. Moreover, gliotoxin increased intracellular reactive oxygen species (ROS). Since ROS have been known to inhibit $NF-{\kappa}B$, this may also contribute to gliotoxin's antitumorigenic effects. These results suggest that gliotoxin suppressed the activation of $NF-{\kappa}B$ by inhibiting phosphorylation and degradation of $I{\kappa}B-{\alpha}$ and by increasing ROS, which resulted in apoptosis of HT1080 cells. Cumulatively, gliotoxin is a promising candidate antagonist of $NF-{\kappa}B$, and it should be investigated for its possible use as a selective inhibitor of human fibrosarcoma cells.

돼지 말초혈액 단핵구세포에서 trans-10, cis-12 conjugated linoleic acid의 TNF-${\alpha}$ 생산에 대한 nuclear factor-${\kappa}B$ p65 활성 조절 효과 (Trans-10, cis-12 Conjugated Linoleic Acid Modulates Nuclear Factor-${\kappa}B$ p65 Activity on the Production of Tumor Necrosis Factor-${\alpha}$ in Porcine Peripheral Blood Mononuclear Cells)

  • 김영범;이일우;강지훈;양만표
    • 한국임상수의학회지
    • /
    • 제28권2호
    • /
    • pp.190-195
    • /
    • 2011
  • 본 연구에서 돼지 PBMC에 t10c12-CLA 처리는 TNF-${\alpha}$생산을 증가시켰으나, LPS 자극 PBMC에서는 TNF-${\alpha}$생산을 감소시켰다. t10c12-CLA 처리는 PBMC의 inhibitory ${\kappa}B$ ($I{\kappa}B$)-${\alpha}$ 단백질 분해를 증가시키고 NF-${\kappa}B$ p65 활성 수준을 증가시켰다. 그러나 LPS 자극 PBMC에서는 상반되는 효과가 관찰되었다. 특히, LPS 비자극 PBMC에서 t10c12-CLA는 NF-${\kappa}B$ 저해제인 caffeic acid phenethyl ester (CAPE)를 처리한 경우 NF-${\kappa}B$ p65 활성 수준을 증가시켰으나 반대로 LPS로 자극한 CAPE 처리 PBMC에서는 NF-${\kappa}B$ p65 활성 수준을 억제시켰다. 이상의 결과는 t10c12-CLA가 돼지 PBMC에 있어 LPS 자극 유무에 따라 다른 효과를 가질 수 있으며, 이는 NF-${\kappa}B$ p65 활성도의 변화와 관련성이 있음을 보여주고 있다.

Effect of Minocycline on Activation of Glia and Nuclear Factor kappa B in an Animal Nerve Injury Model

  • Gu, Eun-Young;Han, Hyung-Soo;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권5호
    • /
    • pp.237-243
    • /
    • 2004
  • Glial cells are activated in neuropathy and play a key role in hyperalgesia and allodynia. This study was performed to determine whether minocycline could attenuate heat hyperalgesia and mechanical allodynia, and how glial cell activation and nuclear factor kappa B (NF-kappaB) were regulated by minocycline in a model of chronic constriction of sciatic nerve (CCl). When minocycline (50 mg/kg, oral) was daily administered from 1 day before to 9 days after ligation, heat hyperalgesia and mechanical allodynia were attenuated. Furthermore, when minocycline treatment was initiated 1 or 3 days after ligation, attenuation of the hypersensitive behavior was still robust. However, the effect of attenuation was less when minocycline was started from day 5. In order to elucidate the mechanism of pain attenuation by minocycline, we examined the changes of glia and NF-kappaB, and found that attenuated hyperalgesia and allodynia by minocycline was accompanied by reduced microglial activation. Furthermore, the number of NF-kappaB immunoreactive cells increased after CCI treatment and this increase was attenuated by minocycline. We also observed translocation of NF-kappaB into the nuclei of activated glial cells. These results suggest that minocycline inhibits activation of glial cells and NF-kappaB, thereby attenuating the development of behavioral hypersensitivity to stimuli.