• Title/Summary/Keyword: Nuclear Cost

Search Result 637, Processing Time 0.039 seconds

'Brine Management through brine mining of trace metals' for developing Secondary sources of nuclear fuel

  • T.L. Prasad
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.674-680
    • /
    • 2023
  • The brine and seawater are important and largely untapped sources of critical trace metals and elements. The coupling of selective recovery of trace metals from seawater/brine with desalination plants gives an added advantage of energy credits to desalination plants and as well as reduce the cost of desalinated water. In this paper, status review on recovery of important trace metals and other alkali metals from seawater is presented. The potential of Indian desalination plants for recovery of trace metals, based on recovery ratio of 0.35 is also highlighted. Studies carried out by the process based on adsorption using Radiation Induced Grafted (RIG) polymeric adsorbents and then fractional elutions are presented. The fouling factors due to bio fouling and dirt fouling have been estimated for various locations of interest through field trails. The pay loader in the form of compact Contactor Assembly with minimum pressure drop, for loading specially designed radiation grafted sorbent in leaflet form has been briefed, as required for plant scale facility. The typical conceptual process design details of farm assembly of project CRUDE are described.

Study on Market Prospects, Financing Challenges and Alternative Solutions in New Nuclear Power Projects (신규 원전의 시장전망 및 금융조달의 과제와 대안)

  • Lee, Jang-pyo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.133-141
    • /
    • 2016
  • Although construction of any new nuclear power projects had not been launched since mid-1970s until recently in the USA, many new nuclear power plants have been constructed in many countries with the support of their governments mainly as part of their national energy security and electric source diversification policies. For many reasons, the nuclear power industry seemed to reclaim their renaissance from the beginning of this century and the investment in the nuclear power projects draw positive concern from the private financial sector. But the global financial crisis in 2008 and subsequent economic slow-down together with tighter bank credit regulations caused commercial banks, the main source of financing, to lose appetite for investing in new nuclear power projects. But the nuclear power economics shows that the nuclear power is viable in terms of the environmental benefit and long-term average cost compared to other power generation sources. Also doubt about nuclear power safety was much mitigated due to technology development and reinforced safety-related tests and monitoring. Therefore, the prospect for nuclear power market expansion remains positive although there are comparatively big differences among different scenarios. After Korea Electric Power Corp. won the UAE nuclear power project in December of 2009, the competition in nuclear power markets is undergoing huge changes. Competitors backed by the support of their own governments are now entering the market with many aggressive and innovative financing packages to win bids of new nuclear power projects. This report analyzed the nuclear power market prospects, competitive edges of nuclear power, risk management measures, and financing challenges and recommends alternative solutions to promote competitive edges in winning bids of new nuclear power projects.

Assessment of the CO2 Emission Considering the Generator Maintenance Scheduling (발전기보수유지계획을 고려한 CO2배출량의 추정)

  • Jeon, Dong-Hoon;Park, Jeong-Je;Oh, Tae-Gon;Cho, Kyeong-Hee;Choi, Jae-Seok;Baek, Ung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1507-1513
    • /
    • 2010
  • The $CO_2$ emission can be decreased due to freedom of generator maintenance scheduling(GMS). This paper proposes assessment of $CO_2$ emission considering generator maintenance scheduling(GMS) and evaluates effect of the GMS on $CO_2$ emission. And also, this paper assesses the $CO_2$ emission and the probabilistic production cost simulation of nuclear and thermal power generators considering operation of hydro and pumped generator. The minimum reliability criterion level satisfied production cost minimization function model is used in this paper. The practicality and effectiveness of the proposed approach are demonstrated by simulation studies for a real size power system in Korea in 2010.

Generation Mix Analysis based on the Screening Curve and WASP-IV Techniques (탐색곡선법과 WASP-IV 모형을 이용한 국내 적정 전원구성 분석)

  • Jang, Se-Hwan;Park, Jong-Bae;Roh, Jae-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.534-541
    • /
    • 2012
  • This paper tries to elicit an optimal generation mix of Korea. Two approaches, using the screening curve method and taking advantage of a generation expansion planning tool, WASP-IV, are applied in getting the mix. The data used in this study is based on the 5th basic plan for long-term electricity supply and demand. The Load Duration Curve, that is needed for applying Screening Curve Method(SCM), is made based on the load profile in 2010. In our using SCM, the nuclear plant's operation characteristic, carbon emission cost and spinning reserve are considered. In using WASP-IV to get the adequate generation mix, the base and target demand forecasts in the 5th basic plan are used and the carbon emission cost is also considered. In this paper, It introduces the domestic adequacy generation mix in 2024 though SCM and WASP-IV.

Fuel Cycle Cost Modeling for the Generation IV SFR at the Pre-Conceptual Design Stage

  • Kim, Seong-Ho;Moon, Kee-Hwan;Kim, Young-In
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.11a
    • /
    • pp.51-52
    • /
    • 2009
  • Recently, several industrial countries using the fission energy have given attention to the Gen-IV SFR (sodium-cooled fast reactor) for achieving sustainable nuclear energy systems. In this context, an SFR is currently developed at the design concepts study stage in the Republic of Korea [Kim & Hahn 200909]. The sustainability of systems means economic, environment-friendly, proliferation-resistant, and safer systems. More specifically, this sustainability can be accomplished in terms of resource recycling and radioactive waste reduction. In the present work, the objective of fuel cycle cost modeling is to identify the impact of various conceptual options as a cost reduction measure for the Gen-IV SFR at the design concepts study stage. It facilitates the selection of several reasonable fuel cycle pathways for the future Gen-IV SFR from an economic viewpoint.

  • PDF

Cost-Effective Modular Electroeionization (EDI)

  • Tessier, David F.;Haas, William E.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.143-158
    • /
    • 1997
  • Electrochemical deionization (EDI) offers continuous demineralization at higher water recovery rates (>90%), compared with mixed bed ion exchange, and without the use of chemical regenerants and the associated production of saline waste water. Although EDI technology has been used in some power generation applications, its wider application requires the satisfactory resolution of outstanding capital cost and performance issues. This paper reports on the field evaluation of a new cost-effective EDI technology in a power generation application. The E-Cell System$^{TM}$, which became commercially available in the fourth quarter of 1996, consists of a rugged, modular system, based on a new high-performance EDI stack. Starting in May 1996, a 100 gpm modular EDI pilot system, rated for operation at 100 psi, was evaluated at the TVA Brown's Ferry Nuclear Plant. The feed consisted of Reverse Osmosis (RO) permeate with a conductivity of 4-7 $\mu$S/cm. The pilot system reliably produced 17.8-18.0 M$\Omega$.cm water under design operating conditions, independent. Silica levels were reduced from ca. 50 ppb to 4 ppb, while TOC levels were reduced from ca. 120 ppb to 30 ppb.

  • PDF

Economic Analysis and Comparison between Low-Power and High-Power SOEC Systems (저출력 및 고출력 SOEC 시스템의 경제성 분석 비교)

  • TUANANH BUI;YOUNG SANG KIM;DONG KEUN LEE;KOOK YOUNG AHN;YONGGYUN BAE;SANG MIN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.707-714
    • /
    • 2022
  • Hydrogen production using solid oxide electrolysis cells (SOEC) is a promising technology because of its efficiency, cleanness, and scalability. Especially, high-power SOEC system has received a lot of attention from researchers. This study compared and analyzed the low-power and high-power SOEC system in term of economic. By using revenue requirement method, levelized cost of hydrogen (LCOH) was calculated for comparison. In addition, the sensitivity analysis was performed to determine the dependence of hydrogen cost on input variables. The results indicated that high-power SOEC system is superior to a low-power SOEC system. In the capital cost, the stack cost is dominant in both systems, but the electricity cost is the most contributed factor to the hydrogen cost. If the high-power SOEC system combines with a nuclear power plant, the hydrogen cost can reach 3.65 $/kg when the electricity cost is 3.28 ¢/kWh and the stack cost is assumed to be 574 $/kW.

The characteristics of nuclear powered submarine and the use of enriched uranium (원자력 추진 잠수함의 특성과 농축우라늄 사용)

  • Jang, Jun-Seop
    • Strategy21
    • /
    • s.41
    • /
    • pp.261-293
    • /
    • 2017
  • Nuclear power is a way of attaining an enormous amount of energy with relatively small amount of resources and after it has been introduced to the submarine since 1954, there are approximately 150 of nuclear powered submarine currently on a mission around the world. This is due to the maneuverability, mountability and covertness of nuclear submarines. However, there are other tasks, not only the high level of nuclear technology that are needed to be dealt with in order to construct nuclear powered submarine. The biggest task of all is to secure the enriched uranium. Accordingly, this research is about the way of enriching and securing the nuclear fuel that are used in the nuclear submarine with the characteristics, merits and demerits of the nuclear submarine. Due to the fact that the pressurized water reactor in South Korea is the reactor that was originally built for the development of nuclear powered submarine, many parts is designed to be suitable for the submarine propulsion. However, in order to apply this to submarine it is needed to consider additional requests such as the position of reactor, accident-coping system, radioactive covering, reactor output adjustment and ship's pitch and roll in order to apply this to submarine. Nuclear submarines have much higher speed based on the powerful propulsion in comparison with diesel-electric submarine and also have bigger loading area. Besides, there is no need to snorkel and they also have advantages in covertness with the multi-noise proof system. The nuclear technology in South Korea has seen the dramatic development since 1962 and in 1998 reached to the level that we have succeeded in the localization of nuclear plant and exported the world-class one-piece small-sized reactor (SMART) to UAE. To operate these reactors, we import the whole quantity of low-enriched uranium and having our own uranium enrich facility is not probable because of the budget and international regulations. With the ROK/US nuclear agreement revised on 2015 November, the enrichment of uranium that are available without special permission has changed up to 20%. According to the assumption that we use the 20% enrichment of Uranium on U.S. virginia class submarine, it is necessary to change the fuel after 11 years and it will cause additional cost of 1 billion dollars. But the replace period by the uranium's enrichment rate is not fixed so that it is possible to change according to the design of reactor. Therefore, I would like to make a suggestion on two types of design concepts of nuclear submarine that can be operated for 30 years without nuclear fuel change by using the 20% enriched uranium from ONNp.First of all, it is possible by increasing the size of reactor by 3 times and it results in the 1,000t increase of the weight. And secondly, it is by designing the one piece reactor to insert devices such as steam turbine, condenser into the inside of nuclear core like the Rubis class submarines of France.