• Title/Summary/Keyword: Nuclear Component

Search Result 706, Processing Time 0.025 seconds

Mad1p, a Component of the Spindle Assembly Checkpoint in Fission Yeast, Suppresses a Novel Septation-defective Mutant, sun1, in a Cell Division Cycle

  • Kim In G.;Rhee Dong K.;Jeong Jae W.;Kim Seong C.;Won Mi S.;Song Ki W.;Kim Hyong B.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.162-172
    • /
    • 2002
  • Schizosaccharomyces pombe is suited for the study of cytokinesis as it divides by forming a septum in the middle of the cell at the end of mitosis. To enhance our understanding of the cytokinesis, we have carried out a genetic screen for temperature-sensitive S. pombe mutants that show defects in septum formation and cell division. Here we present the isolation and characterization of a new temperature-sensitive mutant, sun1(septum uncontrolled), which undergoes uncontrolled septation during cell division cycle at restrictive temperature $(37^{\circ}C)$. In sun1 mutant, actin ring and septum are positioned at random locations and angles, and nuclear division cycle continues. These observations suggest that the sun] gene product is required for the proper placement of the actin ring as well as precise septation. The sun] mutant is monogenic recessive mutation unlinked to previously known various cdc genes of S. pombe. In a screen for $sunl^+$ gene to complement the sun] mutant, we have cloned a gene, $susl^+$(suppressor of sun1 mutant), that encodes a protein of 689 amino acids. The predicted amino acid sequence of $susl^+$ gene is similar to the human hMadlp and Saccharomyces cerevisiae Mad1p, a component of the spindle checkpoint in eukaryotic cells. The null mutant of $susl^+$ gene grows normally at various temperatures and has the increased sensitivity to anti-microtubule drug, while $susl^+$ mutant shows no sensitivity to microtubule destabilizing drugs. The putative S. pombe Sus1p directly interacts with S. pombe Mad2p in yeast two-hybrid assays. These data suggest that the newly isolated susr gene encodes S. pombe Mad1p and suppresses sun] mutant defective in controlled septation in a cell division cycle.

  • PDF

Rock Weathering and Geochemical Characteristics in the KURT (한국원자력연구소 지하처분연구시설(KURT)의 암석 풍화 및 지화학적 특성)

  • Lee, Seung-Yeop;Baik, Min-Hoon;Cho, Won-Jin;Hahn, Pil-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.321-328
    • /
    • 2006
  • A basic research was conducted on the mineral weathering and geochemical characteristics in the KURT (KAERI Underground Research Tunnel), which was recently constructed at a site in KAERI. Some rock samples exposed during the KURT construction were examined using a microscope and chemical analysis for some micro-changes of the rocks caused by the chemical weathering. The weathered granite has some small and fine cracks around the rock-forming minerals. In particular, there are a characteristic weathering of feldspar mineral and a preferential leaching of Ca component from the mineral dissolution. In addition, by the dissolution of biotite containing $Fe^{2+}$ component there were iron-oxides precipitates as secondary products into the microcracks of around minerals. The results also show that the micro-cracks initiated from the mineral interior are extended and connected into the larger cracks along the grain boundary with the progress of the weathering. Thus, it is considered that some chemicals dissolved from the fresh rock would be involved in the formation of secondary minerals and migrate interacting with them.

  • PDF

Surface-Displayed IL-10 by Recombinant Lactobacillus plantarum Reduces Th1 Responses of RAW264.7 Cells Stimulated with Poly(I:C) or LPS

  • Cai, Ruopeng;Jiang, Yanlong;Yang, Wei;Yang, Wentao;Shi, Shaohua;Shi, Chunwei;Hu, Jingtao;Gu, Wei;Ye, Liping;Zhou, Fangyu;Gong, Qinglong;Han, Wenyu;Yang, Guilian;Wang, Chunfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.421-431
    • /
    • 2016
  • Recently, poly-γ-glutamic acid synthetase A (pgsA) has been applied to display exogenous proteins on the surface of Lactobacillus casei or Lactococcus lactis, which results in a surface-displayed component of bacteria. However, the ability of carrying genes encoded by plasmids and the expression efficiency of recombinant bacteria can be somewhat affected by the longer gene length of pgsA (1,143 bp); therefore, a truncated gene, pgsA, was generated based on the characteristics of pgsA by computational analysis. Using murine IL-10 as an exogenous gene, recombinant Lactobacillus plantarum was constructed and the capacity of the surface-displayed protein and functional differences between exogenous proteins expressed by these strains were evaluated. Surface expression of IL-10 on both recombinant bacteria with anchorins and the higher expression levels in L. plantarum-pgsA'-IL-10 were confirmed by western blot assay. Most importantly, up-regulation of IL-1β, IL-6, TNF-α, IFN-γ, and the nuclear transcription factor NF-κB p65 in RAW264.7 cells after stimulation with Poly(I:C) or LPS was exacerbated after co-culture with L. plantarum-pgsA. By contrast, IL-10 expressed by these recombinant strains could reduce these factors, and the expression of these factors was associated with recombinant strains that expressed anchorin (especially in L. plantarum-pgsA'-IL-10) and was significantly lower compared with the anchorin-free strains. These findings indicated that exogenous proteins could be successfully displayed on the surface of L. plantarum by pgsA or pgsA', and the expression of recombinant bacteria with pgsA' was superior compared with bacteria with pgsA.

A Solid-state 27Al MAS and 3QMAS NMR Study of Basaltic and Phonolitic Silicate Glasses (현무암과 포놀라이트 비정질 규산염의 원자구조 차이에 대한 고상핵자기 공명 분광분석 연구)

  • Park, Sun Young;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • While the macroscopic properties and eruption style of basaltic and phonolitic melts are different, the microscopic origins including atomic structures are not well understood. Here we report the atomic structure differences of glass in diopside-anorthite eutectic composition (basaltic glass) and phonolitic glass using high-resolution 1D and 2D solid-state Nuclear Magnetic Resonance (NMR). The $^{27}Al$ MAS NMR spectra for basaltic glass and phonolitic glass show that the full width at half maximum (FWHM) of Al for basaltic glass is about twice than phonolitic glass, suggesting the topological disorder of basaltic magma is larger than that of phonolitic magma. The $^{27}Al$ 3QMAS NMR spectra for basaltic glass and phonolite glass show much improved resolution than the 1D MAS NMR, resolving Al and Al. Approximately 3.3% of Al is observed for basaltic glass, demonstrating the configurational disorder of basaltic magma is larger than phonolitic magma. This result confirms that the topological disorder of Al in basaltic glass is larger than that of phonolitic glass. The observed structural differences between basaltic glass and phonolitic glass can provide an atomistic origin for change of the macroscopic properties with composition including viscosity.

The Preventive Effect of Captopril on VEGF Expression in Streptozotocin-induced Diabetic Retiniopathy (당뇨병성 망막증에 있어서 Captopril에 의한 VEGF 발현 저하 효과)

  • Bae, Chun-Sik;Lim, Seul-Ki;Park, Min-Jung;Han, Ho-Jae;Kim, Kye-Yeop;Jeong, Soo-Young;Yoon, Kyung-Chul;Park, Soo-Hyun
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.81-87
    • /
    • 2009
  • Diabetic retinopathy is one of major complications of diabetes mellitus, which is associated with the dysfunction of retina. It has been reported that the onset of diabetic retinopathy is related to the activation of renin-angiotensin system (RAS). Angiotensin converting enzyme (ACE), which converts angiotensin I into angiotensin II, is a key component of RAS. Among many growth factors, vascualr endothelial growth factor (VEGF) is an important cytokine in the neovasculization of retina, which is a characteristics of diabetic retinopathy. However, the relationship between ACE and VEGF was not elucidated in diabetic retinopathy. Thus, this study was conducted to examine the protective effect of captopril, an ACE inhibitor, in the retina of streptozotocin (STZ)-treated diabetic rats. In present study, STZ-treated diabetic rats exhibited the increase of VEGF levels in serum and retina. The serum levels of VEGF in STZ-treated diabetic rats was not blocked by the treatment of captopril. However, the retina levels of VEGF in STZ-treated diabetic rats was blocked by the treatment of captopril, suggesting the local action of captopril in retina. Immunohistochemical analysis also revealed that the retina of STZ-treated diabetic rats manifested the increase of ganglion cell layers, outer nuclear layers, and inner nuclear layers, which were also prevented by the treatment of captopril. In conclusion, captopril prevented the expression of VEGF in the retina of STZ-treated diabetic rats.

Tubular Type Direct Methanol Fuel Cell for in situ NMR Diagnosis (In Situ NMR 진단용 원통형 직접 메탄올 연료전지)

  • Joh, Han-Ik;Um, Myung-Sup;Han, Kee-Sung;Han, Oc-Hee;Ha, Heung-Yong;Kim, Soo-Kil
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.329-334
    • /
    • 2009
  • This study is to develop a fuel cell system applicable to an in situ NMR (Nuclear magnetic resonance) diagnosis. The in situ NMR can be used in real time monitoring of various reactions occurring in the fuel cell, such as oxidation of fuel, reduction of oxygen, transport phenomena, and component degradation. The fuel cell for this purpose is, however, to be operated in a specifically designed tubular shape toroid cavity detector (TCD), which constrains the fuel cell to have a tubular shape. This may cause difficulties in effective mass transport of reactants/products and uniform distribution of assembly pressure. Therefore, a new flow field designed in a particular way is necessary to enhance the mass transport in the tubular fuel cell. In this study, a tubular-shaped close-type flow field made of non-magnetic material is developed. With this flow field, oxygen is effectively delivered to the cathode surface and the produced water is readily removed from the membrane-electrode assembly to prevent flooding. The resulting DMFC (direct methanol fuel cell) outperforms the open-type flow field and exhibits $36\;mW/cm^2$ even at room temperature.

Analytical Evaluation of Residual Stresses in Dissimilar Metal Weld for Cast Stainless Steel Pipe and Low-Alloy Steel Component Nozzle (스테인리스주강 배관과 저합금강 기기노즐 이종금속용접부 잔류응력의 해석적 평가)

  • Park, June-Soo;Song, Min-Seop;Kim, Jong-Soo;Kim, In-Yong;Yang, Jun-Seog
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.100-100
    • /
    • 2009
  • This paper is concerned with numerical analyses of residual stresses in welds and material's susceptibility to stress corrosion cracking (SCC) for the primary piping system in nuclear power plants: Both the dissimilar metal weld (DMW) for stainless steel to low alloy steel joints and the similar metal weld (SMW) for forged stainless steel to cast stainless steel joints are considered. Thermal elasto-plastic analyses using the finite element method (FEM) are performed to predict residual stresses generated in fabrication welding and its related processes for both the DMW and SMW, including effects of quenching for cast stainless steel piping, machining of the DMW root, and grinding of the SMW root. As a result, the effect of quenching should be included in the evaluation of residual stresses in the SMW for the cast stainless steel piping. It is deemed that residual stresses in both the DMW and SMW would not affect the SCC susceptibility of the welds providing that the welding processes are completed without any weld repair on the inside wall of the joint. However, the grinding process if performed on the safe-end to piping weld, would produce a high level of residual stresses in the inner surface region and thus a stress improvement process (e.g. buffing) should be considered to reduce susceptibilities to SCC.

  • PDF

Anti-cancer Properties and Relevant Mechanisms of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp., (동충하초 유래 cordycepin의 항암 활성 기전 최근 연구 동향)

  • Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.607-614
    • /
    • 2015
  • Cancers are the largest cause of mortality and morbidity all over the world. Cordycepin, an adenosine analog, is a major functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. Over the last decade, this compound has been reported to possess many pharmacological properties, such as an ability to enhance immune function, as well as anti-inflammatory, antioxidant and anti-cancer effects. Recently, numerous studies have reported interesting properties of cordycepin as a chemopreventive agent as well. There is an accumulating body of experimental evidences suggesting that cordycepin impedes cancer progression by promoting apoptosis, inducing cell cycle arrest, modulating intracellular signaling pathways, and inhibiting invasion and metastasis of cancer cells. In many cancer cell lines, cordycepin inhibits growth and cell cycle progression by inducing arrest of the G2/M phase, resulting from the inhibition of retinoblastoma protein phosphorylation and induction of cyclin-dependent kinase inhibitors. To induce apoptosis, cordycepin activates the extrinsic and intrinsic pathways, which promotes reactive oxygen species generation and the downstream activation of kinase cascades. Cordycepin also can activate alternative pathways to cell death such autophagy. In addition, cordycepin can inhibit the pro-metastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the nuclear factor-kappa B and activated protein-1 signaling pathways. In this review, we summarized the variety of action mechanisms by which cordycepin may mediate chemopreventive effects on cancer and discussed the potential of this natural product as a promising therapeutic inhibitor of cancer development.

Development of Computer Code for Simulation of Multicomponent Aerosol Dynamics -Uncertainty and Sensitivity Analysis- (다성분 에어로졸계의 동특성 묘사를 위한 전산 코드의 개발 -불확실성 및 민감도 해석-)

  • Na, Jang-Hwan;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.85-98
    • /
    • 1987
  • To analyze the aerosol dynamics in severe accidents of LMFBR, a new computer code entitled MCAD (Multicomponent Aerosol Dynamics) has been developed. The code can treat two component aerosol system using relative collision probability of each particles as sequences of accident scenarios. Coagulation and removal mechanisms incorporating Brownian diffusion and gravitational sedimentation are included in this model. In order to see the effect of particle geometry, the code makes use of the concept of density correction factor and shape factors. The code is verified using the experimental result of NSPP-300 series and compared to other code. At present, it fits the result of experiment well and agrees to the existing code. The input variables included are very uncertain. Hence, it requires uncertainty and sensitivity analysis as a supplement to code development. In this analysis, 14 variables are selected to analyze. The input variables are compounded by experimental design method and Latin hypercube sampling. Their results are applied to Response surface method to see the degree of regression. The stepwise regression method gives an insight to which variables are significant as time elapse and their reasonable ranges. Using Monte Carlo Method to the regression model of LHS, the confidence level of the results of MCAD and their variables is improved.

  • PDF

Ziyuglycoside II Attenuates Tumorigenesis in Experimental Colitis-associated Colon Cancer (AOM/DSS로 유도된 마우스 대장암 모델에서의 Ziyuglycoside-II의 항염증효과)

  • Cheon, Hye-Jin;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.941-948
    • /
    • 2019
  • Colorectal cancer is a major health problem in industrialized countries. Ziyuglycoside II ($3{\beta}-3-{\alpha}$-1- arabinopyranosyloxy-19-hydroxyurs-12-en-28-oicacid), a triterpenoid saponin isolated from the roots of Sanguisorba officinalis L., possesses antioxidant, antiangiogenic, and anticancer properties. However, the therapeutic function of ziyuglycoside II in colitis-associated colorectal carcinogenesis is undefined. In the present study, the effect of ziyuglycoside II on colitis-associated colon cancer induced in mice using azoxymethane (AOM)/dextran sulfate sodium (DSS) was explored. The AOM model recapitulates many features of human colon cancer, but it lacks an inflammatory component. DSS induces colitis and promotes AOM-induced colon cancer in mice. BALB/c mice were injected with AOM and administered 2% DSS in drinking water. The mice were given ziyuglycoside II (1 or 5 mg/kg) orally three times per week, and colonic tissue was collected at 64 days. Administration of ziyuglycoside II markedly diminished the formation of colonic tumors. Western blot and immunohistological analyses showed that ziyuglycoside II noticeably decreased nuclear factor kappa-B-positive cells and levels of inflammation-related proteins, such as inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-${\alpha}$, and interleukin-6 in colon tissue. It also prompted apoptosis. Ziyuglycoside II treatment augmented cleaved forms of caspase-3, caspase-7, and poly (ADP-ribose) polymerase in colonic tissues. In conclusion, ziyuglycoside II could defend against colitis-associated tumorigenesis in mice by inhibiting inflammation and inducing apoptosis. This shows a promising chemopreventive potential for its use in colitis-associated colon cancer.