• 제목/요약/키워드: Nuclear $factor-{\kappa}B$ (NF-${\kappa}B)$$I{\kappa}B-{\alpha}$

검색결과 222건 처리시간 0.027초

인체 전립선 상피세포에서 HDAC 저해제 trichostatin A의 caspase 및 NF-κB의 활성화를 통한 apoptosis 유도 (Induction of Apoptosis by HDAC Inhibitor Trichostatin A through Activation of Caspases and NF-κB in Human Prostate Epithelial Cells.)

  • 박철;김성윤;최병태;이원호;최영현
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.336-343
    • /
    • 2008
  • 본 연구에서는 인체전립선 상피세포인 267B1 세포에서 HDAC 저해제인 TSA에 의한 증식억제가 apoptosis 유도에 의한 것임을 제시하였다. 이러한 TSA에 의한 267B1 세포의 apoptosis에는 c-IAP-1 및 c-IAP-2와 같은 IAP family의 발현감소가 동반되었으나 Bax 및 Bcl-2와 같은 Bcl-2 family의 발현에는 큰 변화가 없었다. 그리고 TSA에 의한 267Bl 세포의 apoptosis는 caspase의 활성에 의한 표적 단백질들의 분해와 연관성이 있었다. 또한 TSA에 의한 apoptosis 유도에서 $NF-{\kappa}B$의 활성이 증가된다는 것을 세포질에서 $NF-{\kappa}B$의 핵 내로의 이동에 따른 전사활성의 증가 현상에 의한 것임을 다양한 방법으로 제시하였다. 본 연구의 결과는 TSA와 같은 HDAC 저해제에 의한 apoptosis 유도에는 $NF-{\kappa}B$의 활성 증가가 동반될 수 있음을 보여주는 결과로서 HDAC 저해제의 항암활성에 대한 $NF-{\kappa}B$의 새로운 역할 가능성을 제시하여 주는 것으로서 이에 관한 추가적인 연구의 필요성을 제시하였다.

Indacaterol Inhibits Tumor Cell Invasiveness and MMP-9 Expression by Suppressing IKK/NF-κB Activation

  • Lee, Su Ui;Ahn, Kyung-Seop;Sung, Min Hee;Park, Ji-Won;Ryu, Hyung Won;Lee, Hyun-Jun;Hong, Sung-Tae;Oh, Sei-Ryang
    • Molecules and Cells
    • /
    • 제37권8호
    • /
    • pp.585-591
    • /
    • 2014
  • The ${\beta}_2$ adrenergic receptor (ADRB2) is a G protein-coupled transmembrane receptor expressed in the human respiratory tract and widely recognized as a pharmacological target for treatments of asthma and chronic obstructive pulmonary disorder (COPD). Although a number of ADRB2 agonists have been developed for use in asthma therapy, indacaterol is the only ultra-long-acting inhaled ${\beta}_2$-agonist (LABA) approved by the FDA for relieving the symptoms in COPD patients. The precise molecular mechanism underlying the pharmacological effect of indacaterol, however, remains unclear. Here, we show that ${\beta}$-arrestin-2 mediates the internalization of ADRB2 following indacaterol treatment. Moreover, we demonstrate that indacaterol significantly inhibits tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced NF-${\kappa}B$ activity by reducing levels of both phosphorylated-IKK and -$I{\kappa}B{\alpha}$, thereby decreasing NF-${\kappa}B$ nuclear translocation and the expression of MMP-9, an NF-${\kappa}B$ target gene. Subsequently, we show that indacaterol significantly inhibits TNF-${\alpha}$/NF-${\kappa}B$-induced cell invasiveness and migration in a human cancer cell line. In conclusion, we propose that indacaterol may inhibit NF-${\kappa}B$ activity in a ${\beta}$-arrestin2-dependent manner, preventing further lung damage and improving lung function in COPD patients.

Ginsenoside Rp1, a Ginsenoside Derivative, Blocks Promoter Activation of iNOS and COX-2 Genes by Suppression of an IKKβ-mediated NF-κB Pathway in HEK293 Cells

  • Shen, Ting;Lee, Jae-Hwi;Park, Myung-Hwan;Lee, Yong-Gyu;Rho, Ho-Sik;Kwak, Yi-Seong;Rhee, Man-Hee;Park, Yung-Chul;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • 제35권2호
    • /
    • pp.200-208
    • /
    • 2011
  • Ginsenoside (G) $Rp_1$ is a ginseng saponin derivative with anti-cancer and anti-inflammatory activities. In this study, we examined the mechanism by which G-$Rp_1$ inhibits inflammatory responses of cells. We did this using a strategy in which DNA constructs containing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) promoters were transfected into HEK293 cells. G-$Rp_1$ strongly inhibited the promoter activities of COX-2 and iNOS; it also inhibited lipopolysaccharide induced upregulation of COX-2 and iNOS mRNA levels in RAW264.7 cells. In HEK293 cells G-$Rp_1$ did not suppress TANK binding kinase 1-, Toll-interleukin-1 receptor-domain-containing adapter-inducing interferon-${\beta}$ (TRIF)-, TRIF-related adaptor molecule (TRAM)-, or activation of interferon regulatory factor (IRF)-3 and nuclear factor (NF)-${\kappa}$B by the myeloid differentiation primary response gene (MyD88)-induced. However, G-$Rp_1$ strongly suppressed NF-${\kappa}$B activation induced by I${\kappa}$B kinase (IKK)${\beta}$ in HEK293 cells. Consistent with these results, G-$Rp_1$ substantially inhibited IKK${\beta}$-induced phosphorylation of $I{\kappa}B{\alpha}$ and p65. These results suggest that G-$Rp_1$ is a novel anti-inflammatory ginsenoside analog that can be used to treat IKK${\beta}$/NF-${\kappa}$B-mediated inflammatory diseases.

지질다당체유도 BV2세포손상에 대한 상백피 추출물의 항염증작용 (Anti-inflammatory Action of Extract of Mori Cortex against Lipopolysaccharide-induced BV2 Microglia)

  • 박신형;최영현;엄현섭;지규용
    • 동의생리병리학회지
    • /
    • 제24권3호
    • /
    • pp.463-469
    • /
    • 2010
  • This research is performed to obtain positive evidences of Mori cortex, a kind of oriental medicinal herbs, in the cellular levels. The extracts of M. cortex have shown anti-inflammatory effects against cutaneous inflammation and clinical effects on pulmonary asthma and congestion in oriental medicine. Thus BV2 cells were chosen because microglia are considered as the main immunocompetent cells in the central nervous system. Lipopolysaccharide (LPS)-induced microglial activation of cultured BV2 cells and subsequent release of nitric oxide (NO) and Prostaglandin E2 (PGE2) were effectively suppressed by methylene chloride extract of Morus alba L. (MEMA). From the inflammation-mediated mRNA and protein analyses, we showed that inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-$1{\beta}$ (IL-$1{\beta}$) and tumor necrosis alpha (TNF-${\alpha}$) induced by LPS were markedly decreased by MEMA treatment. From the observation of nuclear factor-kB (NF-${\kappa}B$) which is controlling and mediating inflammation through COX-2 and iNOS, there showed that p65, a subunit of NF-${\kappa}B$, was increased in nuclear and $I{\kappa}B$, a competitor of NF-${\kappa}B$, was recovered in cytosol after MEMA treatment. These are corresponding with results of iNOS, COX-2, IL-$1{\kappa}$ and TNF-${\alpha}$, and confirm some suppressive effect against transcriptional activation of NF-${\kappa}B$. In conclusion, the anti-inflammatory action of M. cortex against BV2 microglia cells is expected to protect nerve tissues through suppression of neuronal inflammation in various neurodegenerative diseases.

Evidence of hydrolyzed traditional Korean red ginseng by malted barley on activation of receptor interacting proteins 2 and IkappaB kinase-beta in mouse peritoneal macrophages

  • Rim, Hong-Kun;Kim, Kyu-Yeob;Moon, Phil-Dong
    • 셀메드
    • /
    • 제2권3호
    • /
    • pp.27.1-27.6
    • /
    • 2012
  • Red ginseng, which has a variety of biological and pharmacological activities including antioxidant, anti-inflammatory, antimutagenic and anticarcinogenic effects, has been used for thousands of years as a general tonic in traditional oriental medicine. Here, we tested the immune regulatory activities of hydrolyzed red ginseng by malted barley (HRG) on the expressions of receptor interacting proteins (Rip) 2 and $I{\kappa}B$ kinase-beta (IKK-${\beta}$) in mouse peritoneal macrophages. We show that HRG increased the activations of Rip 2 and IKK-${\beta}$ for the first time. When HRG was used in combination with recombinant interferon-${\gamma}$ (rIFN-${\gamma}$), there was a marked cooperative induction of nitric oxide (NO) production. The increased expression of inducible NO synthase from rIFN-${\gamma}$ plus HRG-stimulated cells was almost completely inhibited by pre-treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). In addition, the treatment of peritoneal macrophages with rIFN-${\gamma}$ plus HRG caused significant increases in tumor necrosis factor (TNF)-${\alpha}$ mRNA expression and production. Because NO and TNF-${\alpha}$ play an important role in the immune function and host defense, HRG treatment can modulate several aspects of the host defense mechanisms as a result of the stimulations of the inducible nitric oxide synthase and NF-${\kappa}B$. In conclusion, our findings demonstrate that HRG increases the productions of NO and TNF-${\alpha}$ from rIFN-${\gamma}$-primed macrophages and suggest that Rip2/IKK-${\beta}$ plays a critical role in mediating these immune regulatory effects of HRG.

RAW 264.7 대식세포에서 Gelidium amansii의 항염증 효과 (Anti-inflammatory Effects of Gelidium amansii in RAW 264.7 Macrophages)

  • 최원식;김영선;이상현;채규윤;이영행
    • 동의생리병리학회지
    • /
    • 제23권3호
    • /
    • pp.673-677
    • /
    • 2009
  • In order to verify the anti-inflammatory effects of Gelidium amansii, RAW264.7 macrophages were incubated with the extract of 70% ethanol solution (Ex), and activated with the endotoxin lipopolysaccharide (LPS). Ex inhibited the expression of the pro-inflammatory enzymes, including inducible nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of iNOS-mediated NO and COX-2-mediated prostglandin $E_2$ ($PGE_2$) production in a dose-dependent manner. Ex also reduced the release of the pro-inflammatory cytokines, including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-1${\beta}$ (IL-1${\beta}$) and IL-6 in LPS-activated macrophages, The observed anti-inflammatory effects of Ex was associated with inactivation of the nuclear factor ${\kappa}B$ (NF-${\kappa}B$) that mediates the induction of iNOS, COX-2, TNF-${\alpha}$, IL-1${\beta}$, and IL-6. Further studies showed that Ex inactivated NF-${\kappa}B$ through inhibition of phosphorylation of the inhibitory ${\kappa}B$ ($l{\kappa}B$), Taken together, these results suggest that Gelidium amansii exerts anti-inflammatory effects by inhibiting the expression of pro-inflammatory enzymes and the secretion of pro-inflammatory cytokines via inactivation of NF-${\kappa}B$ and/or $l{\kappa}B$.

Curcumin Suppresses Activation of NF-κB and AP-1 Induced by Phorbol Ester in Cultured Human Promyelocytic Leukemia Cells

  • Han, Seong-Su;Keum, Young-Sam;Seo, Hyo-Joung;Surh, Young-Joon
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.337-342
    • /
    • 2002
  • Many components that are derived from medicinal or dietary plants possess potential chemopreventive properties. Curcumin, a yellow coloring agent from turmeric (Curcuma longa Linn, Zingiberaceae), possesses strong antimutagenic and anticarcinogenic activities. In this study, we have found that curcumin inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced nuclear factor ${\kappa}B$ (NF-${\kappa}B$) activation by preventing the degradation of the inhibitory protein $I{\kappa}B{\alpha}$ and the subsequent translocation of the p65 subunit in cultured human promyelocytic leukemia (HL-60) cells. Alternatively, curcumin repressed the TPA-induced activation of NF-${\kappa}B$ through direct interruption of the binding of NF-${\kappa}B$ to its consensus DNA sequences. Likewise, the TPA-induced DNA binding of the activator protein-1 (AP-1) was inhibited by curcumin pretreatment.

Salidroside의 RAW 264.7 세포에서 $NF{-\kappa}B$ 불활성화를 통한 LPS에 (Inhibition of LPS induced iNOS, COX-2 and cytokines expression by salidroside through the $NF{-\kappa}B$ inactivation in RAW 264.7 cells)

  • 원소정;박희준;이경태
    • 생약학회지
    • /
    • 제39권2호
    • /
    • pp.110-117
    • /
    • 2008
  • In this study, we investigated the anti-inflammatory effects of salidroside (SAL) isolated from the MeOH extract of Acer tegmentosum Maxim heartwood in RAW 264.7 macrophage cells. SAL pretreatment significantly inhibited nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions in the lipopolysaccharide (LPS)-induced RAW 264.7 cells. Western blot and RT-PCR analyses revealed that SAL inhibited the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, SAL reduced the release and the mRNA expressions of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6). Furthermore, nuclear factorkappa B ($NF{-\kappa}B$) luciferase reporter assay was performed to know the involvement of SAL in the production of pro-inflammatory cytokines, we confirmed that LPS-induced transcription activity of $NF{-\kappa}B$ was inhibited by SAL. Taken together, our data indicate that anti-inflammatory property of salidroside might be the result from the inhibition of iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expressions via the down-regulation of $NF{-\kappa}B$ activity.

Potential Role of Ursodeoxycholic Acid in Suppression of Nuclear Factor Kappa B in Microglial Cell Line (BV-2)

  • Joo, Seong-Soo;Won, Tae-Joan;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • 제27권9호
    • /
    • pp.954-960
    • /
    • 2004
  • Expression of the NF-$textsc{k}$B-dependent genes responsible for inflammation, such as TNF-$\alpha$, IL-1$\beta$, and nitric oxide synthase (NOS), contributes to chronic inflammation which is a major cause of neurodegenerative diseases (i.e. Alzheimer's disease). Although NF-$textsc{k}$B plays a biphasic role in different cells like neurons and microglia, controlling the activation of NF-$textsc{k}$B is important for its negative feedback in either activation or inactivation. In this study, we found that ursodeoxycholic acid (UDCA) inhibited I$textsc{k}$B$\alpha$ degradation to block expression of the NF-$textsc{k}$B-dependent genes in microglia when activated by $\beta$-amyloid peptide (A$\beta$). We also showed that when microglia is activated by $A\beta$42, the expression of A20 is suppressed. These findings place A20 in the category of ' protective ' genes, protecting cells from pro-inflammatory reper-toires induced in response to inflammatory stimuli in activated microglia via NF-$textsc{k}$B activation. In light of the gene and proteins for NF-$textsc{k}$B-dependent gene and inactivator for NF-$textsc{k}$B (I$textsc{k}$B$\alpha$), the observations now reported suggest that UDCA plays a role in supporting the attenuation of the production of pro-inflammatory cytokines and NO via inactivation of NF-$textsc{k}$B. Moreover, an NF-$textsc{k}$B inhibitor such as A20 can collaborate and at least enhance the anti-inflammatory effect in microglia, thus giving a potent benefit for the treatment of neurodegenerative diseases such as AD.uch as AD.

Activity and Expression Pattern of NF-κB/P65 in Peripheral Blood from Hepatocellular Carcinoma Patients - Link to Hypoxia Inducible Factor -1α

  • Gaballah, Hanaa Hibishy;Zakaria, Soha Said;Ismail, Saber Abdelrahman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6911-6917
    • /
    • 2014
  • Background: Hepatocellular carcinoma is a complex and heterogeneous tumor with poor prognosis due to frequent intrahepatic spread and extrahepatic metastasis. The molecular mechanisms underlying HCC pathogenesis still remain obscure. Objectives: We aimed to investigate the abundance and the DNA binding activity of nuclear factor kappa B/p65 subunit in peripheral blood mononuclear cells from patients with HCC and to assess its prognostic significance and association with hypoxia inducible factor one alpha (HIF-$1{\alpha}$) in blood. Subjects and methods: This study was carried out on 40 patients classified equally into liver cirrhosis (group I) and HCC (group II), in addition to 20 healthy volunteers (group III). All groups were subjected to measurement of NF-${\kappa}B$/P65 subunit expression levels by real time-PCR, and DNA binding activity was evaluated by transcription factor binding immunoassay. Serum HIF-$1{\alpha}$ levels were estimated by enzyme-linked immunosorbent assay (ELISA). Significant increase of both the expression level and DNA binding activity of NF-${\kappa}B$/P65 subunit together with serum HIF-1 alpha levels was noted in HCC patients compared to liver cirrhosis and control subjects, with significant positive correlation with parameters for bad prognosis of HCC. In conclusion, NF-${\kappa}B$ signaling is activated in HCC and associated with disease prognosis and with high circulating levels of HIF-1 alpha.