• Title/Summary/Keyword: Nu number

Search Result 168, Processing Time 0.021 seconds

ANALYSIS OF RAYLEIGH-BENARD NATURAL CONVECTION WITH THE SECOND-MOMENT TURBULENCE MODEL (이차모멘트 난류모델을 사용한 Rayleigh-Benard 자연대류 유동 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.111-117
    • /
    • 2008
  • This paper reports briefly on the computational results of a turbulent Rayleigh-Benard convection with the elliptic-blending second-moment closure (EBM). The primary emphasis of the study is placed on an investigation of accuracy and numerical stability of the elliptic-blending second-moment closure for the turbulent Rayleigh-Benard convection. The turbulent heat fluxes in this study are treated by the algebraic flux model with the temperature variance and molecular dissipation rate of turbulent heat flux. The model is applied to the prediction of the turbulent Rayleigh-Benard convection for Rayleigh numbers ranging from $Ra=2{\times}10^6$ to $Ra=10^9$, and the computed results are compared with the previous experimental correlations, T-RANS and LES results. The predicted cell-averaged Nusselt number follows the correlation by Peng et al.(2006) ($Nu=0.162Ra^{0.286}$) in the 'soft' convective turbulence region ($2{\times}10^6{\leq}Ra{\leq}4{\times}10^7$) and it follows the experimental correlation by Niemela et al. (2000) ($Nu=0.124Ra^{0.309}$) in the 'hard' convective tubulence region ($10^8{\leq}Ra{\leq}10^9$) within 5% accuracy. This results show that the elliptic-blending second-moment closure with an algebraic flux model predicts very accurately the Rayleigh Benard convection.

  • PDF

Numerical investigation and optimization of the solar chimney performances for natural ventilation using RSM

  • Mohamed Walid Azizi;Moumtez Bensouici;Fatima Zohra Bensouici
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.521-533
    • /
    • 2023
  • In the present study, the finite volume method is applied for the thermal performance prediction of the natural ventilation system using vertical solar chimney whereas, design parameters are optimized through the response surface methodology (RSM). The computational simulations are performed for various parameters of the solar chimney such as absorber temperature (40≤Tabs≤70℃), inlet temperature (20≤T0≤30℃), inlet height of (0.1≤h≤0.2 m) and chimney width (0.1≤d≤0.2 m). Analysis of variance (ANOVA) was carried out to identify the design parameters that influence the average Nusselt number (Nu) and mass flow rate (ṁ). Then, quadratic polynomial regression models were developed to predict of all the response parameters. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are Nu=25.67 and ṁ=24.68 kg/h·m, corresponding to design parameters h=0.18 m, d=0.2 m, Tabs=46.81℃ and T0=20℃. The optimal ventilation flow rate is enhanced by about 96.65% compared to the minimum ventilation rate, while solar energy consumption is reduced by 49.54% compared to the maximum ventilation rate.

A Numerical Analysis of the Thermal Hydraulic Characteristics in a Channel of 37 Rods (전산해석을 통한 37개봉으로 구성된 유로에서의 열유체학적 특성분석)

  • 전태현;심윤섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.50-55
    • /
    • 1986
  • Characteristics of the flow and heat transfer in a channel of 37 rods are investigated numerically. The flow is taken to be a fully developed incompressible laminar flow and it has an uniform temperature profile at the inlet and flows down through the channel of constant wall temperature. A boundary-fitted coordinate system is used for the complex geometry. Calculation is initiated by calculating the developed flow profile and then proceeds to temperature development. Through the calculation the details of the flow and temperature distribution characteristics are found, and discussion is made on the mechanism of the transport phenomena in the complex geometry in terms of wall shear stress distribution, non-dimensionalized velocity, friction factor, Nusselt number distribution, Reynolds number, and porosity. Also the effects of the eccentricity in rod configuration are analyzed and its importance is emphasized.

Effect of supply air temperature and airflow rate on ventilation effectiveness in an underfloor air conditioning space (바닥취출 공조공간에서 급기온도 및 급기풍속이 환기효율에 미치는 영향)

  • 정광섭;한화택;홍승재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.640-648
    • /
    • 1998
  • A numerical study has been conducted to investigate the effect of inflow supply air temperature and velocity on ventilation effectiveness in an underfloor air conditioning space. A low Reynolds number k-$\varepsilon$ model is implemented to calculate steady state turbulent velocity distributions. A step-down injection method is used to calculate local and room mean ages from transient concentrations based on the concept of the age of air. Results show that there is a significant effect of Archimedes number on ventilation effectiveness especially for cooling conditions. Reynolds number shows relatively minor effect on velocity distribution and ventilation effectiveness especially for isothermal and heating conditions. It can be concluded that underfloor air conditioning system provides good ventilation characteristics for cooling conditions because of temperature stratification in the space.

  • PDF

Experimental Investigation on the Performance of a Scroll Expander for an Organic Rankine Cycle (유기랭킨사이클(ORC)을 위한 주전열면 열교환기의 채널주름비에 따른 유동 및 열전달특성)

  • Sung, Min-Je;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.158-162
    • /
    • 2014
  • A series of numerical simulation has been carried out to study thermo-hydraulic characteristics of a primary surface type heat exchanger, which is designed for the evaporator and condenser of a geothermal ORC. Working fluid is geothermal water at hot side and R-245fa, which is a refrigerant designed for ORC, at cold side. Amplitude ratio of the channel and Reynolds number are considered as design parameters. Nusselt number is presented for the Reynolds number ranging from 50 to 150 and compared to analytic solutions. The result shows that higher amplitude ratio channel gives better heat transfer performance within the range of investigation.

직사각형 밀폐공간내 자연대류 열전달의 수치해석

  • Min, Man-Gi
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.3
    • /
    • pp.185-219
    • /
    • 1981
  • To analyze two dimensional incompressible laminar natural convection in a rectangular enclosure heated from below and cooled by a horizontal ceiling and two vertical walls, he primitive Navier-Stokes equations and the energy equation were solved numerically in time dependent form by a marker and cell method. A successive over-relaxation method for the elliptic portion of the problem and an explicit method for the parabolic portion were applied for the range of Grashoff number of $5{\times}10^3\;to\;5{\times}10^4$ to get the transient and steady state dimensionless temperature and velocity profiles. For the range of aspect ratio $L/H{\leqq}2.4$ in which only a pair of convection rolls exists mean Nusselt number calculated are as follows : $$N_{NU}0.89\;N_{Gr}^{0.2}(H/L)^{0.45}$$ By path lines drawn by marker particle trajectories roll number of cellular motion were observed for various aspect ratio of the enclosure.

  • PDF

A Study on the Development of Low Reynolds Number Second Moment Turbulence Model (저레이놀즈수 2차 모멘트 난류모형 개발에 관한 연구)

  • 김명호;최영돈;신종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1596-1608
    • /
    • 1993
  • Low Reynolds number second moment turbulence model which be applicable to the fine gird near the wall region was developed. In this model, turbulence model coefficients in the pressure strain model of the Reynolds stress equation was expressed as functions of turbulence Reynolds number $R_{t}\equivk^{2}/(\nu\varepsilon)).$ In the derivation procedure of the present low Reynolds number algebraic stress model, Laufer's near wall experimental data on Reynolds stresses were curve fitted as functions of R$_{t}$ and the resulting simultaneous equations of the model coefficients were solved by using the boundary conditions at wall and high Reynolds number limiting conditions. Predicted Reynolds stresses and dissipation rate of turbulent kinetic energy etc. in the 2 dimensional parallel, plane channel flow and pipe flow were compared with the preditions obtained by employing the Launder-Shima model, standard algebraic stress model and several experimental data. Results show that all the Reynolds stresses and dissipation rate of turbulent kinetic energy predicted by the present low Reynolds number algebraic stress model agree better with the experimental data than those predicted by other algebraic stress models.

Heat Transfer Correlation to Predict the Evaporation of a Water Droplet in Superheated Steam during Reflood Phase of a LOCA

  • Kim, Yoo;Ban, Chang-Hwan
    • Journal of Energy Engineering
    • /
    • v.9 no.3
    • /
    • pp.261-268
    • /
    • 2000
  • A heat transfer correlation to predict the vaporization of a water droplet in highly superheated steam during a loss-of-coolant accident(LOCA) of a nuclear power plant is provided. Vaporization of liquid fuel or water droplets in superheated air or steam and subsequent interface heat transfer between a liquid droplet and superheated gas is typically correlated by way of a Nusselt number as a function of Reynolds number, Prantl number, and in some cases including mass transfer number. Presently available correlations and experimental data of the evaporation of liquid droplets in air or steam are analyzed and a new Nusselt number correlation is proposed taking Schmidt number into consideration in order to account for binary diffusion of the vapor as well, Nu$\_$f/(1+B)$\^$0.7/=2+0.53Sc$\_$f/$\^$-1/5/Re$\_$M/$\^$$\sfrac{1}{2}$/Pr$\_$f/$\^$$\sfrac{1}{3}$/ for which properties are evaluated at film condition except the density of Reynolds number evaluated at ambient condition. Diverse correlations for various combinations of liquid and gas species are put into single equation. The blowing correction factor of (1+B)$\^$0.7/ is confirmed appropriate, and a criterion to distinguish so-called high- and low-temperature condition of ambient gas is set forth.

  • PDF

Performance Analysis of M-ary PPM UWB Suitable to FCC Signal Spectrum (FCC 신호 스펙트럼에 적합한 M-ary PPM UWB 시스템의 성능분석)

  • ;;Brant Parr
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8A
    • /
    • pp.633-643
    • /
    • 2003
  • UWB impulse radio signals have an very short duration, extremely wide bandwidth and share the same frequency spectrum with other existing systems. It was determined by the Federal Communications Commission (FCC) that UWB systems could cause interference with other systems, such as Global Positioning System (GPS) for example. Therefore, at present. the FCC has restricted the use of UWB systems to frequencies above 3.1㎓. In this paper, We evaluated performance of UWB system using proposed pulses in [1][2] that are strictly limited in time to remove interference while, at the same time, contain their power distribution to a frequency band from 3.1㎓ to 10.6㎓. In particular, We evaluated the BER Performance in relation to system parameters such as pulse duration. $\delta$, the number of users. Nu. and the number of symbols, M. We found the optimal pulse duration $\delta$ through computer simulation using developed UWB pulses in [1][2]. It is shown that performance evaluation between the UWB communication system using these UWB pulses [1][2]and the Gaussian monocycle pulse in M-ary PPM and BPSK schemes. These results can be contributed to construct M-ary PPM UWB communication system in terms of multiuser parameters and pulse duration.

Natural Convection Heat Transfer of an Inclined Helical Coil in a Duct (기울어진 덕트 내 헬리컬 코일의 자연대류 열전달)

  • Park, Joo-Hyun;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.13-20
    • /
    • 2014
  • The natural convection heat transfers of a helical coil in a duct were measured experimentally varying the inclination. To achieve high Rayleigh number, mass transfer experiments instead of heat transfer experiments were performed based upon the analogy. The $Ra_D$ was fixed to $4.55{\times}10^6$. The turn numbers were 1~10. the pitch to diameter ratio were 1.3~5, and the inclination of the helical coil $0^{\circ}{\sim}90^{\circ}$. The measured $Nu_D$ for a single turn of the helical coil was very close to that from McAdams heat transfer correlation for a horizontal cylinder. The heat transfers of the helical coil were varied by the pith, number of turns, and duct height in a complex manner showing the velocity, chimney, and pre-heating effects. The results of the study contributes to the phenomenological analyses of the natural convection heat transfer of a compact heat exchanger.