• Title/Summary/Keyword: Nrf2 signaling

Search Result 134, Processing Time 0.022 seconds

Heme Oxygenase-1 Determines the Differential Response of Breast Cancer and Normal Cells to Piperlongumine

  • Lee, Ha-Na;Jin, Hyeon-Ok;Park, Jin-Ah;Kim, Jin-Hee;Kim, Ji-Young;Kim, BoRa;Kim, Wonki;Hong, Sung-Eun;Lee, Yun-Han;Chang, Yoon Hwan;Hong, Seok-Il;Hong, Young Jun;Park, In-Chul;Surh, Young-Joon;Lee, Jin Kyung
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.327-335
    • /
    • 2015
  • Piperlongumine, a natural alkaloid isolated from the long pepper, selectively increases reactive oxygen species production and apoptotic cell death in cancer cells but not in normal cells. However, the molecular mechanism underlying piperlongumine-induced selective killing of cancer cells remains unclear. In the present study, we observed that human breast cancer MCF-7 cells are sensitive to piperlongumine-induced apoptosis relative to human MCF-10A breast epithelial cells. Interestingly, this opposing effect of piperlongumine appears to be mediated by heme oxygenase-1 (HO-1). Piperlongumine upregulated HO-1 expression through the activation of nuclear factor-erythroid-2-related factor-2 (Nrf2) signaling in both MCF-7 and MCF-10A cells. However, knockdown of HO-1 expression and pharmacological inhibition of its activity abolished the ability of piperlongumine to induce apoptosis in MCF-7 cells, whereas those promoted apoptosis in MCF-10A cells, indicating that HO-1 has anti-tumor functions in cancer cells but cytoprotective functions in normal cells. Moreover, it was found that piperlongumine-induced Nrf2 activation, HO-1 expression and cancer cell apoptosis are not dependent on the generation of reactive oxygen species. Instead, piperlongumine, which bears electrophilic ${\alpha},{\beta}$-unsaturated carbonyl groups, appears to inactivate Kelch-like ECH-associated protein-1 (Keap1) through thiol modification, thereby activating the Nrf2/HO-1 pathway and subsequently upregulating HO-1 expression, which accounts for piperlongumine-induced apoptosis in cancer cells. Taken together, these findings suggest that direct interaction of piperlongumine with Keap1 leads to the upregulation of Nrf2-mediated HO-1 expression, and HO-1 determines the differential response of breast normal cells and cancer cells to piperlongumine.

6-Shogaol and 10-Shogaol Synergize Curcumin in Ameliorating Proinflammatory Mediators via the Modulation of TLR4/TRAF6/MAPK and NFκB Translocation

  • Xian Zhou;Ahmad Al-Khazaleh;Sualiha Afzal;Ming-Hui (Tim) Kao;Gerald Munch;Hans Wohlmuth;David Leach;Mitchell Low;Chun Guang Li
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.27-39
    • /
    • 2023
  • Extensive research supported the therapeutic potential of curcumin, a naturally occurring compound, as a promising cytokine-suppressive anti-inflammatory drug. This study aimed to investigate the synergistic anti-inflammatory and anti-cytokine activities by combining 6-shogaol and 10-shogaol to curcumin, and associated mechanisms in modulating lipopolysaccharides and interferon-γ-induced proinflammatory signaling pathways. Our results showed that the combination of 6-shogaol-10-shogaolcurcumin synergistically reduced the production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor and interlukin-6 in lipopolysaccharides and interferon-γ-induced RAW 264.7 and THP-1 cells assessed by the combination index model. 6-shogaol-10-shogaol-curcumin also showed greater inhibition of cytokine profiling compared to that of 6-shogaol-10-shogaol or curcumin alone. The synergistic anti-inflammatory activity was associated with supressed NFκB translocation and downregulated TLR4-TRAF6-MAPK signaling pathway. In addition, SC also inhibited microRNA-155 expression which may be relevant to the inhibited NFκB translocation. Although 6-shogaol-10-shogaol-curcumin synergistically increased Nrf2 activity, the anti-inflammatory mechanism appeared to be independent from the induction of Nrf2. 6-shogaol-10-shogaol-curcumin provides a more potent therapeutic agent than curcumin alone in synergistically inhibiting lipopolysaccharides and interferon-γ induced proinflammatory mediators and cytokine array in macrophages. The action was mediated by the downregulation of TLR4/TRAF6/MAPK pathway and NFκB translocation.

Inhibitory Effect of Sageretia theezans against the Production of Pro-Inflammatory Mediators through the Inhibition of NF-κB and MAPK, and Activation of Nrf2/HO-1 Signaling Pathways in LPS-Stimulated RAW264.7 cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.98-98
    • /
    • 2018
  • In this study, we evaluated the anti-inflammatory effect of extracts of leaves (ST-L) and branches (ST-B) from Sageretia theezans in LPS-stimulated RAW264.7 cells. ST-L and ST-B significantly inhibited the production of the pro-inflammatory mediators such as NO, iNOS, COX-2, $IL-1{\beta}$ and IL-6 in LPS-stimulated RAW264.7 cells. ST-L and ST-B blocked LPS-induced degradation of $I{\kappa}B-{\alpha}$ and nuclear accumulation of p65, which resulted to the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. ST-L and ST-B also attenuated the phosphorylation of ERK1/2, p38 and JNK in LPS-stimulated RAW264.7 cells. In addition, ST-L and ST-B increased HO-1 expression in RAW264.7 cells, and the inhibition of HO-1 by ZnPP reduced the inhibitory effect of ST-L and ST-B against LPS-induced NO production in RAW264.7 cells. Inhibition of p38 activation and ROS elimination attenuated HO-1 expression by ST-L and ST-B, and ROS elimination inhibited p38 activation induced by ST-L and ST-B. ST-L and ST-B dramatically induced nuclear accumulation of Nrf2, but this was significantly reversed by the inhibition of p38 activation and ROS elimination. Collectively, our results suggest that ST-L and ST-B exerts potential anti-inflammatory activity by suppressing $NF-{\kappa}B$ and MAPK signaling activation, and activating HO-1 expression through the nuclear accumulation of Nrf2 via ROS-dependent p38 activation. These findings suggest that ST-L and ST-B may have great potential for the development of anti-inflammatory drug to treat acute and chronic inflammatory disorders.

  • PDF

Effect of Paeoniae Radix Alba on a thioacetamide induced liver fibrosis mice model (Thioacetamide로 유발된 간섬유증 동물 모델에서 백작약이 미치는 효능)

  • Lee, Se Hui;Lee, Jin A;Shin, Mi-Rae;Seo, Bu-Il;Roh, Seong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.544-552
    • /
    • 2021
  • This study investigated the anti-fibrotic and antioxidant effects of Paeonia Radix Alba water extract (PR) on thioacetamide (TAA)-induced liver fibrosis in a mouse model and its underlying mechanisms. Liver fibrosis was induced by intraperitoneal injection of TAA (three times a week) for 8 weeks. Furthermore, silymarin (50 mg/kg body weight) and PR (200 mg/kg body weight) were administered for 8 weeks. PR treatment downregulated aspartate aminotransferase (AST), alanine aminotransferase (ALT), ammonia, and myeloperoxidase levels. Moreover, PR treatment downregulated NOX2 and p47phox and upregulated antioxidant enzymes by activating the Nrf2/Keap1 signaling pathway. Furthermore, PR inhibited the factors associated with fibrosis, such as α-SMA and collagen I. AMPK/SIRT1 was upregulated by PR treatment. Overall, these results suggest that PR attenuates liver fibrosis by regulating the Nrf2/Keap1 and AMPK/SIRT1/NF-κB signaling pathways through the inhibition of oxidative stress. Hence, PR has potential as a remedy for preventing and treating liver fibrosis.

Synergistic Renoprotective Effect of Melatonin and Zileuton by Inhibition of Ferroptosis via the AKT/mTOR/NRF2 Signaling in Kidney Injury and Fibrosis

  • Kyung Hee Jung;Sang Eun Kim;Han Gyeol Go;Yun Ji Lee;Min Seok Park;Soyeon Ko;Beom Seok Han;Young-Chan Yoon;Ye Jin Cho;Pureunchowon Lee;Sang-Ho Lee;Kipyo Kim;Soon-Sun Hong
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.599-610
    • /
    • 2023
  • According to recent evidence, ferroptosis is a major cell death mechanism in the pathogenesis of kidney injury and fibrosis. Despite the renoprotective effects of classical ferroptosis inhibitors, therapeutic approaches targeting kidney ferroptosis remain limited. In this study, we assessed the renoprotective effects of melatonin and zileuton as a novel therapeutic strategy against ferroptosis-mediated kidney injury and fibrosis. First, we identified RSL3-induced ferroptosis in renal tubular epithelial HK-2 and HKC-8 cells. Lipid peroxidation and cell death induced by RSL3 were synergistically mitigated by the combination of melatonin and zileuton. Combination treatment significantly downregulated the expression of ferroptosis-associated proteins, 4-HNE and HO-1, and upregulated the expression of GPX4. The expression levels of p-AKT and p-mTOR also increased, in addition to that of NRF2 in renal tubular epithelial cells. When melatonin (20 mg/kg) and zileuton (20 mg/kg) were administered to a unilateral ureteral obstruction (UUO) mouse model, the combination significantly reduced tubular injury and fibrosis by decreasing the expression of profibrotic markers, such as α-SMA and fibronectin. More importantly, the combination ameliorated the increase in 4-HNE levels and decreased GPX4 expression in UUO mice. Overall, the combination of melatonin and zileuton was found to effectively ameliorate ferroptosis-related kidney injury by upregulating the AKT/mTOR/ NRF2 signaling pathway, suggesting a promising therapeutic strategy for protection against ferroptosis-mediated kidney injury and fibrosis.

Ameliorative Effect of Persicaria Poliata Etract through the Rgulation of AP-1, PI3K/Akt and MAPK Sgnaling Mlecules in UVB-Iradiated HaCaT Clls (HaCaT 세포에서 며느리 배꼽 추출물의 AP-1, PI3K/Akt 및 MAPK 활성 조절을 통한 광손상 억제 효과)

  • Hyun-Seo Yoon;Chung-Mu Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Purpose : Skin is the primary barrier to protect the body from various exogenous factors. Among them, UVB exposure can cause the induction of not only excessive inflammatory responses but also the degradation of extracellular matrix (ECM), including collagen and elastin. This study tried to investigate the ameliorative effect of Persicaria perfoliata ethanol extract (PPEE) on UVB-irradiated photodamage through the regulation of activator protein (AP)-1, phosphoinositide 3-kinase (PI3K)/Akt, and mitogen-activated protein kinase (MAPK) signaling molecules in HaCaT cells. Methods : The cytotoxicity of PPEE on HaCaT cells was evaluated by the WST-1 assay. The 80 mJ/cm2 of UVB (312 nm) was irradiated on HaCaT cells to induce the photodamage. Western blot analysis was conducted to investigate the protein expression levels of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, and heme oxygenase (HO)-1 for ameliorative status by PPEE treatment in UVB-exposed HaCaT cells. In addition, the activated status of the inflammatory transcription factor, AP-1, as well as upstream signaling molecules, PI3K/Akt, and MAPK, were also evaluated by Western blot analysis. Results : Any cytotoxic effect was not induced at the concentration up to 200 ㎍/ml by PPEE treatment. Protein expression levels of COX-2 and MMP-9 were significantly down- and up-regulated by PPEE treatment. The inflammatory transcription factor AP-1, stimulated by UVB irradiation, was also significantly attenuated by PPEE treatment. The phosphorylated status of PI3K/Akt and MAPK were mitigated by PPEE treatment in UVB-exposed HaCaT cells. Moreover, PPEE treatment potently accelerated the expression of HO-1 and its transcription factor, nuclear factor-erythroid 2-related factor (Nrf)2, which is known for its anti-inflammatory activity. Conclusion : Consequently, PPEE treatment significantly regulated COX-2 and MMP-9 expressions in UVB-irradiated HaCaT cells. The inflammatory transcription factor AP-1, along with upstream signaling molecules PI3K/Akt and MAPKs, were also attenuated by PPEE treatment in UVB-exposed HaCaT cells. Additionally, PPEE treatment exaggerated HO-1 expression and Nrf2 activation, which might have contributed to the anti-inflammatory activity of PPEE. These results indicate that PPEE could be a candidate for attenuating UVB-induced photodamage in human skin.

Anti-inflammatory Effect of Achyranthoside E Dimethyl Ester in LPS-stimulated RAW 264.7 Cells (LPS로 인한 RAW 264.7 세포의 염증반응에 미치는 achyranthoside E dimethyl ester의 효과)

  • Bang, Soo Young;Kim, Ji-Hee;Moon, Hyung-In;Kim, Young Hee
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.736-742
    • /
    • 2013
  • Achyranthoside E dimethyl ester (AEDE) is an oleanolic acid glycoside from Achyranthes japonica. In this study, we investigated the effects of AEDE on nitric oxide (NO) production and underlying molecular mechanisms in lipopolysaccharide (LPS)-stimulated macrophages. AEDE inhibited LPS-induced NO secretion as well as inducible NO synthase (iNOS) expression, without affecting cell viability. Further study demonstrated that AEDE induced heme oxygenase-1 (HO-1) gene expression. In addition, the inhibitory effects of AEDE on iNOS expression were abrogated by small interfering RNA-mediated knock-down of HO-1. Moreover, AEDE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. AEDE-induced expression of HO-1 was inhibited by inhibitors of phosphatidylinositol 3-kinase (PI-3K) and extracellular signal regulated kinase (ERK1/2). AEDE phosphorylated Akt and ERK1/2 as well. Therefore, these results suggest that AEDE suppresses the production of pro-inflammatory mediator such as NO by inducing HO-1 expression via PI-3K/Akt/ERK-Nrf2 signaling. These findings provide the scientific rationale for anti-inflammatory therapeutic use of AEDE.

Anti-oxidative and Anti-inflammatory Activities of Decaisnea insignis Ethanol Extract (Decaisnea insignis 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.973-980
    • /
    • 2014
  • This study was conducted to explore new nutraceutical resources from the plant kingdom possessing biological activities. To fulfill this purpose, the anti-oxidative and anti-inflammatory activities of Decaisnea insignis ethanol extract (DIEE) were evaluated. First, DIEE possessed potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar to ascorbic acid used as a positive control. Moreover, DIEE inhibited lipopolysaccharide (LPS)- and hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS) in RAW 264.7 cells. Furthermore, DIEE induced the expression of an anti-oxidative enzyme, heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), in a dose-dependent manner. The modulation of the HO-1 and Nrf2 expressions might be regulated by mitogen-activated protein kinases (MAPKs) and their upstream signaling pathways. On the other hand, DIEE suppressed LPS-induced nitric oxide (NO) formation without cytotoxicity. The inhibition of the NO formation was the result of the downregulation of inducible NO synthase (iNOS) by DIEE. The suppression of NO and iNOS by DIEE might be modulated by their upstream transcription factors, nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), and activator protein 1 (AP-1) pathways. Taken together, these results provide important new insights that D. insignis possesses anti-oxidative and anti-inflammatory activities. Therefore, it might be utilized as a promising material in the field of nutraceuticals.

Antioxidant Activity of Novel Casein-Derived Peptides with Microbial Proteases as Characterized via Keap1-Nrf2 Pathway in HepG2 Cells

  • Zhao, Xiao;Cui, Ya-Juan;Bai, Sha-Sha;Yang, Zhi-Jie;Cai, Miao;Megrous, Sarah;Aziz, Tariq;Sarwar, Abid;Li, Dong;Yang, Zhen-Nai
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1163-1174
    • /
    • 2021
  • Casein-derived antioxidant peptides by using microbial proteases have gained increasing attention. Combination of two microbial proteases, Protin SD-NY10 and Protease A "Amano" 2SD, was employed to hydrolyze casein to obtain potential antioxidant peptides that were identified by LC-MS/MS, chemically synthesized and characterized in a oxidatively damaged HepG2 cell model. Four peptides, YQLD, FSDIPNPIGSEN, FSDIPNPIGSE, YFYP were found to possess high 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability. Evaluation with HepG2 cells showed that the 4 peptides at low concentrations (< 1.0 mg/ml) protected the cells against oxidative damage. The 4 peptides exhibited different levels of antioxidant activity by stimulating mRNA and protein expression of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), as well as nuclear factor erythroid-2-related factor 2 (Nrf2), but decreasing the mRNA expression of Kelch-like ECH-associated protein 1 (Keap1). Furthermore, these peptides decreased production of reactive oxygen species (ROS) and malondialdehyde (MDA), but increased glutathione (GSH) production in HepG2 cells. Therefore, the 4 casein-derived peptides obtained by using microbial proteases exhibited different antioxidant activity by activating the Keap1-Nrf2 signaling pathway, and they could serve as potential antioxidant agents in functional foods or pharmaceutic preparation.

Antioxidative and Anti-inflammatory Activities of Ardisia arborescens Ethanol Extract (Ardisia arborescens 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.713-720
    • /
    • 2014
  • In this study, the antioxidative and anti-inflammatory activities of Ardisia arborescens ethanol extract (AAEE) were evaluated using in vitro assays and a cell culture model system. AAEE exhibited potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar to ascorbic acid, which was used as a positive control. Moreover, AAEE effectively suppressed lipopolysaccharide (LPS)- and hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS) in RAW 264.7 cells. Furthermore, AAEE induced the expression of antioxidative enzymes, heme oxygenase 1 (HO-1), and thioredoxin reductase 1 (TrxR1), in addition to their upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), in a dose-dependent manner. The upstream signaling pathways of mitogen-activated protein kinases (MAPKs) might regulate the modulation of HO-1, TrxR1, and Nrf2 expression. On the other hand, AAEE inhibited LPS-induced nitric oxide (NO) formation, without cytotoxicity. Suppression of NO formation was the result of AEEE-induced down-regulation of inducible NO synthase (iNOS). The suppression of NO and iNOS by AAEE might be modulated by their upstream transcription factor, nuclear factor (NF)-${\kappa}B$, and activator protein (AP)-1 pathways. Taken together, these results provide important new insights into the antioxidative and anti-inflammatory activities of A. arborescens. AAAEE might represent a promising material in the field of nutraceuticals.