• 제목/요약/키워드: Nozzle ratio

검색결과 749건 처리시간 0.022초

수평형 폐열회수보일러 배기탈질 SCR시스템의 최적설계를 위한 수치해석적 연구 (Numerical Study on Optimization of the SCR Process Design in Horizontal HRSG for NOx Reduction)

  • 김경숙;이경옥
    • 한국환경과학회지
    • /
    • 제22권11호
    • /
    • pp.1481-1498
    • /
    • 2013
  • The SCR (selective catalytic reduction) system is highly-effective technique for NOx reduction from exhaust gases. In this study, the effects of the direction and size of nozzle and the ammonia injection concentration on the performance of SCR system are analyzed by using the computational fluid dynamics method. When the nozzle is arranged in zigzaged direction which is normal to exhausted gas flow, it is shown that the uniformity of gas flow and the NH3/NO molar ratio is improved remarkably. With the change of the ammonia injection concentration from 0.2 vol%(wet) to 1.0 vol%(wet), the uniformity of gas flow shows a good results. As the size of nozzle diameter changes from 6 mm to 12 mm, the uniformity of gas flow is maintained well. It is shown that the uniformity of the $NH_3/NO$ molar ratio becomes better with decreasing the ammonia injection concentration and the size of nozzle diameter.

바이오 디젤 혼합비에 따른 커먼레일 인젝터의 분사 및 내구특성에 관한 실험 연구 (An Experimental Study on Injection and Durability Characteristics of Common-rail Injector According to mixture Ratio of Bio-diesel)

  • 임석연;김태범;유상석
    • 한국분무공학회지
    • /
    • 제16권1호
    • /
    • pp.44-50
    • /
    • 2011
  • An object of this study is to understand the correlation of injection characteristics and injector dimensions according to biodiesel mixture. The Injection characteristics of different types of common-rail injectors are the number of nozzle holes (5~8), jet cone angle ($146^{\circ}{\sim}153^{\circ}$), hydraulic flow rate (830~900 ml/min) injection quantity and response time. Prior to characteristic experiment, the reference injector has been selected in 6 candidates injectors under the investigation of injected quantity according to the biodiesel mixture so that injector type can be determined. The injector is used for the characteristic experiment which varied the various operating conditions including pressure 23 MPa, 80 MPa, 160 MPa, changing in injection duration 0.16 ms~1.2 ms and even mixture ratio. The result shows that the nozzle hole number and cone angle influence the injection quantity much more than nozzle hole diameter at low injection pressure and the nozzle hole diameter at high injection pressure, post injection duration.

노즐 구경에 따른 초소수력 펠턴 터빈의 효율 및 성능 특성 (Performance Characteristics and Efficiencies of Micro-Hydro Pelton Turbine with Nozzle Diameter Variation)

  • 조인찬;박주훈;신유환;김광호;정진택;김동익
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.60-65
    • /
    • 2015
  • This paper deals with performance characteristics and efficiencies of Pelton turbine can be applied as one of ERDs (Energy Recovery Devices) of PRO (Pressure Retarded Osmosis) system for desalination. The objective of this study is experimentally estimating the performance of micro-scale Pelton turbine for PRO pilot plant. Especially the performance characteristics with variations of jet nozzle diameter of Pelton turbine are discussed in detail. In order to do this, lab scale test rig of Pelton turbine was made for performance test, which includes water tank, Pelton wheel with buckets, jet nozzle and torque brake and so on. The parameter effects related on Pelton turbine's efficiency were investigated and discussed on the influence of the variations of load and speed ratio.

소형로켓 노즐의 냉각에 관한 연구 (Research about the cooling of a small size rocket nozzle)

  • 고태식;심진호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.365-369
    • /
    • 2007
  • 고체로켓은 액체로켓 보다 많은 점에서 제한적으로 작용된다. 추진제의 혼합비, 연소 시간과 면적 등 연소의 모든 부분이 결정되기 때문에 액체로켓보다 제어하기 어렵다. 하지만 제작비가 싸고 신뢰성 확보가 용이하고 추력/중량 비에 따른 초기 속도를 크게 할 수 있기 때문에 소형로켓으로 폭넓게 이용되고 있다. 고체로켓의 추력증가에 따른 노즐의 내부 벽에 열전도로 인해 타는 현상과 고속의 연소가스에 의한 침식현상을 제어하기 위해 노즐냉각에 대한 연구를 수행하였다.

  • PDF

DAF에서 기포의 크기제어 및 영향분석 (Analysis of Controlling the Size of Microbubble in DAF)

  • 독고석;곽동희;김영환
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.235-241
    • /
    • 2004
  • The dissolved air flotation (DAF) process has been widely used for removing suspended solids with low density in water. It has been known as measuring the size of microbubbles precisely which move upward rapidly in contact zone is difficult. In this study particle counter monitoring (PCM) method is used to measure the rising microbubble after injection from a nozzle. Size and distribution curve of microbubbles are evaluated at different conditions such as pressure drop at intermediate valve, length of pipeline between saturation tank and nozzle and low pressure. And the efficiency is also checked when it collides with different size floc. The experimental results show the following fact. As the final pressure drop occurred closer to a nozzle, the bubble size became smaller. And small bubble collides with large floc as well as small one because of its physical characteristic. However large bubble collides well with large floc rather than small one since hydrodynamic flow in streamline interferes to collide between two. With performing computational process by mathematical model we have analyzed and verified the size effect between bubble and floc. Collision efficiency is the highest when P/B ratio shows in the range of 0.75 < P/B ratio ($R_{particle/Rbubble}$) < 2.0.

Study on the Off-design Performance on a Plug Nozzle with Variable Throat Area

  • Azuma, Nobuyuki;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Hongo, Motoyuki
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.644-648
    • /
    • 2004
  • In the present study were examined numerically and experimentally the off-design performance characteristics on an axisymmetric plug nozzle with variable throat area. In this nozzle concept, its throat area can be changed by translating the plug into the axial direction. First, a mixed-expansion plug nozzle, in which two expansion parts are arranged both inside and outside, was designed by means of the method of characteristics. Second, the CFD analysis was verified by the cold-flow wind tunnel test. Third, its performance characteristics were evaluated over a wide range of pressure ratio from half to double throat area through the design point, using the CFD code verified by the wind tunnel tests. It was made clear from the study that not so critical thrust efficiency losses were found and the maximum thrust efficiency loss was at most approximately 5 % under off-design conditions without external flow. This result shows that a plug nozzle can give the altitude compensation even under off-design geometry operations. However, shock waves were observed in the inner expansion part under the doubled throat area operation and thus some thermal problems may be caused on the plug surface. Furthermore, collapse of cell structure on the plug surface was observed with external flow (around Mach number 2.0) as it became lower pressure ratio below the design point and the fact may result in big efficiency loss regardless of geometrical configuration.

  • PDF

BOS법을 이용한 함산소 연료들의 충돌분무특성에 관한 실험적 연구 (Experimental Investigation of Impinged Spray Characteristics of Oxygenated fuels Using BOS Method)

  • 방승환
    • 한국분무공학회지
    • /
    • 제25권3호
    • /
    • pp.111-118
    • /
    • 2020
  • This paper describes the effect of DME, biodiesel blended fuels on the macroscopic spray characteristics in a high pressure diesel injection system using Background Oriented Schlieren (BOS) method. The BOS method for visualization of impingement evaporation sprays to analyze macroscopic spray properties and evolutionary processes. In this work, the blending ratio of DME in the blended fuel are 0, 50, 100% by weight ratio. In order to investigate the macroscopic impinged spray characteristics under the various injection parameters and blending ratio. In this work, a mini-sac type single-hole nozzle injector with nozzle hole was length 0.7 mm and diameter of 0.3 mm was used. According to the result, the spray area of the collision wall increased as the DME mixing ratio increased, and the evolutionary pattern showed a stepwise increase due to the collision effect of the wall. Also, results of impinged spray area were increased according to increasing injection pressure.

환형동축 초음속 자유 제트유동에 관한 실험적 연구 (The Experimental Study of Supersonic, Dual, Coaxial, Free, Jets)

  • 이권희;이준희;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.323-328
    • /
    • 2001
  • Supersonic coaxial, axisymmetric, jets issuing from various kinds of dual coaxial nozzles were experimentally investigated. Four different kinds of coaxial, dual nozzles were employed to characterize the major features of the supersonic, coaxial, dual jets. Two convergent-divergent supersonic nozzles with an impinging angle in the jet axis of the annular jets were designed to have the Mach number 2.0 and used to compare the coaxial jet flows with those discharging from two sonic nozzles. The primary pressure ratio was changed in the range from 4.0 to 10.0 and the assistant jet ratio from 1.0 to 4.0. The results obtained show that the assistant jets from the annular nozzle affect the coaxial jet flows and an increase of both the primary jet pressure ratio and assistant jet pressure ratio produces longer supersonic length of the dual, coaxial jet.

  • PDF

분무실 밀도 변화가 충돌 디젤분무 특성에 미치는 영향 (The Effect of Ambient Gas Density on the Development of Impinging Diesel Spray)

  • 김종현;이봉수;구자예
    • 한국분무공학회지
    • /
    • 제4권2호
    • /
    • pp.40-46
    • /
    • 1999
  • Experimental investigation of unsteady impinging diesel spray on the flat plate have been carried out using high speed camera and Malvern system. The density ratios of ambient gas to diesel fuel were varied using $N_2$ and Ar gas in the case of 14.9, 21.2, 28.4, 35.1, 40.4, and 50.1. With the increase of gas density ratio, the radial penetration is decreased due to the resistance of the ambient gas. With the increase of the gas density ratio and the distance between nozzle tip and flat plate, the height of spray is increased due to the entrance and circulation. With the increase of gas density ratio, SMD is decreased on the nearby position at the center of flat plate, but SMD is increased on the far position. As the distance between nozzle tip and flat plate is increased, SMD is always decreased.

  • PDF

액주형 동축노즐 분무의 무화특성에 관한 실험적 연구 (An experimental study on the atomizing characteristics of liquid column type coaxial sprays)

  • 노병준;강신재;오제하
    • 오토저널
    • /
    • 제14권5호
    • /
    • pp.41-53
    • /
    • 1992
  • The main purpose of this study is to investigate the atomizing characteristics of a two phase spray by using a liquid column type coaxial nozzle. The experiments have been carried out to analyze the atomization behavior, the droplet size distributions, and the statistical properties of droplet size distributions. Immersion sampling method and the image processing technique were adapted for the measurements of particles, and the distributions of the droplet sizes were statistically analyzed. In the experiments, the mass ratio defined as Mr= $M_{\sigma}$/ $M_{1}$ has been changed from 1.0 to 3.4 and the measurements have been performed along the axis of the spray. As a result of this experimental study, the distributions of droplet size were satisfied with the Log-Normal distributions and arithmetic mean diameter and deviation of mass ratio. Droplet volume-surface mean diameter was denoted by a exponential function of mass-ratio and the exponent was denoted by linear relation according to the central axis from the nozzle. Dispersions, skewness factors and flatness factors had comparatively constant values regardless of mass ratio and location.

  • PDF