• Title/Summary/Keyword: Nozzle passing frequency

Search Result 12, Processing Time 0.014 seconds

Development and performance test of a micro bubble irrigation system for root canal cleaning of tooth (치아 근관 세척용 마이크로 기포 세정 시스템 개발 및 성능평가)

  • Sung, Gilhwan;Sung, Jaeyong;Lee, Myeong Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Elimination of the smear layer and bacteria in the root canal is the most important in the endodontic treatment, and various irrigation devices have been developed. Nevertheless, it is hard to eliminate the smear layer and bacteria completely. In this paper, a micro bubble irrigation system has been developed for the root canal cleaning of tooth. Micro bubbles are generated when pressurized fluids passing through a porous material inside a hand-piece nozzle, and the bubbly flows excited by ultrasonic vibration are observed using a high-speed camera and a microscope. The results show that the diameter and number of bubbles increases with the applied pressure, and there found an optimum excitation frequency in order to minimize the bubble size. From in-vitro tests, it is also verified that the developed bubble irrigation system has the ability of antibacterial and infection removal. Thus, this biocompatible system would be well suited for root canal cleaning.

Fracture Mechanism of Gas Turbine Compressor Blades in a Combined Cycle Power Plant (복합화력발전소 가스터빈 압축기 블레이드에 대한 손상원인 고찰)

  • Yang, Kyeong-Hyeon;Song, Oh-Seop;Cho, Cheul-Whan;Yun, Wan-No;Jung, Nam-Geun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1025-1032
    • /
    • 2010
  • Gas turbine compressor blades used in a combined cycle power plant are possibly damaged and fractured during their operation. There are two possible causes of the failure of compressor blades; one is a defect of material quality which can be detected through some microscopic inspections for the fracture section, the other is high cycle fatigue problem caused by vibration and can be diagnosed by carrying out dynamic characteristics analysis for the blades. In this paper, in order to determine the cause of the failure of compressor blades in a combined cycle power plant, examination of the fracture section and the propagation mechanism of the crack via stress analysis are performed. Dynamic characteristics analysis via FRF estimation is also performed to identify the cause of failure.