• Title/Summary/Keyword: Nozzle flow model

Search Result 373, Processing Time 0.023 seconds

An Experimental Study on the Internal Flow Characteristics of a Jet Pump for the Smart UAV Fuel System (스마트무인기 연료계통 제트펌프의 내부 유동 특성에 관한 실험적 연구)

  • Lee, Yoon-Kwon;Lee, Chang-Ho;Choi, Hee-Joo;Lee, Jee-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.107-116
    • /
    • 2008
  • The jet pumps are widely used to transfer the fuel between the tanks in an aircraft fuel supply system. However detailed design procedures for determining the size of components of the jet pumps are not known so well. In this paper, the flow characteristics of the jet pump, which is applied in the fuel transfer system for the smart UAV (Unmanned Aerial Vehicle), were experimentally investigated using the acrylic jet pump model for the visualization of the internal flow. The pressure distributions within the jet pump were measured, and then the loss coefficients of each part were calculated. The effects of Reynolds number and the distances (S) between the exit of the primary nozzle and the mixing chamber entrance were investigated. In addition, cavitation phenomena were considered through the flow visualization inside the jet pump. As a conclusion from the experiment, the contraction shape of the primary nozzle has a strong effect on the loss coefficient of the nozzle and the cavitation occurrence. Cavitation starts around the nozzle exit, and then it propagates to the full flow fields of the jet pump.

The Mixing Characteristics of Melt during the Injection of Gas into a Ladle through an Immersed Lance (침적 Lance를 이용한 가스 injection시 ladle내 액체의 교반특성 연구)

  • 박현서
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • There has been an increasing demand over the years for steels with lower[s] content. For the purpose of improving the efficiency of desulphrization in the powder injection process of ladle, experimental studies were carried out by using cold model to optimize the lance configuration, gas flow rate, immersion depth of lance nozzle, position of lance nozzle relative to the ladle and the effect with slag, etc. As the results of this study, it was made clear that 2-hole nozzle lance (C, E type) placed in an asymmetric position gives the shortest mixing times.

A Study on Coating Deviation Effect by Air Knife Characteristics in CGL (연속용융도금라인에서 에어나이프 특성이 도금편차에 미치는 영향)

  • Bae, Y.H.;Ahn, D.S.;Lee, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.57-68
    • /
    • 1993
  • Air Wiping technique is widely used because of easy and efficient coating control in present CGL. Coaring weight is decided by nozzle header pressure, strip line speed and distance between strip and nozzle. Coating defects are results from unbalance of these factors and coating equipment calibration inaccuracy. Therefore, this study is mainly dealing with the cause of coating defects such as edge overcoating and coating deviation. The coptimum working condition is suggested by formulated coating model using collected working data. We developed two demension analysis program for air flow in nozzle and calculated dynamic pressure and air velocity with this program. The productivity and coating guality are improved by applying the result of this reserach.

  • PDF

The Compressible flow structure behind the exit of a two-dimensional supersonic micro-nozzle (2차원 소형 초음속 노즐 하류의 압축성 유동 구조 해석)

  • Kwon, Soon-Duk;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.323-326
    • /
    • 2006
  • This paper presents the computational results for the two-dimensional compressible non-reacted flow in a converging-diverging micro thrust nozzle of which the ratio of exit to throat width (0.541 in.) is 1.8. The RNG model is applied to calculate the turbulence by loading the standard coefficients. The results agreed very well with the experiments in the view of the shock structure and the pressure distribution at the various pressure ratios between the stagnation and the environmental states. The plume structures are also discussed on the view of the shock-cell structure.

  • PDF

Pre-swirl Nozzle Geometry Optimization to Increase Discharge Coefficient Using CFD Analysis (Pre-swirl system의 유량계수 향상을 위한 Pre-swirl nozzle의 형상 최적화 전산해석 연구)

  • Lee, Hyungyu;Lee, Jungsoo;Kim, Donghwa;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Optimization process of pre-swirl nozzle geometry was conducted to improve the discharge coefficient of pre-swirl system by using CFD. The optimization of pre-swirl nozzle shape covered the converging angle and the location of the converging nozzle. Optimization process included Optimal Latin Hyper-cube Design method to get the experimental points and the Kriging method to create the response surface which gives candidate points. The process was finished when the difference between the predicted value and CFD value of candidate point was less than 0.1 %. This paper compared the Reference model, Initial model which is the first model of optimization and Optimized model to study flow characteristics. Finally, the discharge coefficient of Optimized model is improved about 17 % to the Reference model.

Performance Analysis of SITVC System with Various Secondary Injection Conditions (이차분사노즐 작동 조건 변화에 따른 SITVC 성능해석)

  • Bae, Ji-Yeul;Song, Ji-Woon;Kim, Tae-Hwan;Cho, Hyung-Hee;Bae, Ju-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.116-121
    • /
    • 2011
  • Performance of Secondary Injection Thrust Vector Control system is investigated under various secondary injection operating conditions. 3-dimensional converging-diverging nozzle having 8 secondary injection nozzles is used in this numerical study. Total pressure of flow inside the nozzle is about 70bars, and total temperature set to 300K for cold flow simulation. Effect of secondary injection flow rate and injection nozzle configuration is considered in this research. Simulation is conducted with commercial CFD code Ansys Fluent v13. Spalart-Allmaras(1-equation)model is used for turbulence modeling with AUSM+ scheme. Various performance factors as Axial thrust, side force, system specific impulse ratio are considered and explained for system performance evaluation.

  • PDF

Plume Structure Analysis of an Axisymmetric Supersonic Micro-nozzle at the Various Pressure Ratios (압력비가 변할 때 축대칭 초음속 노즐의 플룸 구조 해석)

  • Kwon, Soon-Duk;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Yong-Sseok
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2862-2867
    • /
    • 2007
  • The steady non-reacted compressible flow field in a symmetric micro-thruster, which is used for the accurate attitude control of a satellite, is analyzed varying the nozzle pressure ratio (NPR) to investigate the plume characteristics. The nozzle throat diameter is 0.06 inch and the area ratio is 56. The recirculation region is found just behind the normal shock at the several NPRs due to the locally adverse pressure gradient along the nozzle centerline when the environmental pressure is atmospheric. This phenomenon, the cause of flow loss, is similar to the flow behind a blunt body. As NPR increases the location of Mach disk, characteristics of the normal shock, moves downstream and its strength increases. The Mach number distribution appears in a wave-type patter after the normal shock because oblique shocks are reflected on the shock boundaries especially when NPRs are very high.

  • PDF

Comparative Studies of Heat Transfer Coefficients for Rocket Nozzle (로켓 노즐의 열전달계수 비교 연구)

  • Hahm, Hee-Cheol;Kang, Yoon-Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.42-50
    • /
    • 2012
  • The goal of heat transfer studies is the accurate prediction of temperature and heat flux distribution on material boundaries. To this purpose, general-purpose computational fluid dynamics(CFD) code is used : FLUENT. Mass fluxes and pressure ratio are calculated for two types of nozzle. The comparative studies reveal that the computational results are in agreement with the experimental data. Also, heat transfer coefficients from FLUENT for one type of nozzle are very similar and agree well with the experimental data in the diverging part of the nozzle, but the calculated results are large in the converging part. The heat transfer coefficients from Bartz equation are over-predicted. We can consider various reasons for these differences, i.e., laminarization by the highly accelerated flow in the nozzle, turbulent flow model and grid generation.

An Experimental Study on the Flow Characteristics with the Impinging Angles of Defrost Nozzle Jet Inside a Vehicle Passenger Compartment (차실내 Defrost 노즐 분류의 충돌각 변화에 따른 유동특성에 관한 실험적 연구)

  • Kim, Duck-Jin;Kim, Hyun-Joo;Rho, Byung-Joon;Lee, Jee-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1024-1032
    • /
    • 2007
  • The flow characteristics with the impinging angles of defrost nozzle jet inside a commercial vehicle passenger compartment were investigated experimentally by using the two-dimensional duct-nozzle model. The shape of the nozzle contraction was designed according to the curved line of cubic equation to the vertical plan of the flow direction. The impinging angles, defined as the angle between nozzle axis and a vertical line to the windshield, were varied from the $0^{\circ}\;to\;80^{\circ}$. The mean velocity distributions, the half-widths, and the momentum distributions with the cases of both the free jet and the impinging jet onto the dummy windshield were measured. The impinging jet flows similarly with wall jet from $X/b_o=20$, and the impinging angle has an effect on the half-width of the impinging jet. The momentum distributions onto the windshield increased with the increase of impinging angle, and then their inflection point was observed around the impinging angle of $60^{\circ}$.

A STUDY ON FLOW MIXING IMPROVEMENT OF SELECTIVE CATALYTIC REDUCTION USING GASEOUS REDUCTANT (기상 환원제를 사용하는 선택적 환원촉매에서 유동혼합 개선에 관한 연구)

  • Ko, S.C.;Lee, B.H.;Cho, S.H.;Lee, S.H.;Hong, S.T.;Lee, D.Y.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2010
  • Since emission regulations for vehicles have become more stringent, SCR technology has drawn a strong attention in order to reduce NOx emissions. Optimal design of a reductant injection nozzle and a multi-hole plate located between the cone and catalyst is critical in that the uniform distribution of reductant is necessary to maximize the NOx conversion efficiency and minimize the slip of reductant in SCR. In this work, an LPG fuel(C3H8 in vapor state) was used as a reductant for LPG vehicles. A Realizable k-$\varepsilon$ model is used for turbulence, and SCR body is defined as porous media with inertia and viscous resistances measured in this work. Effect of the number of nozzle holes on the flow mixing index was analyzed, which revealed that a four hole nozzle shows the best performance in terms of uniformity of flow. An installment of a multi-hole plate at the entrance of catalyst was evaluated with flow mixing index, uniformity of flow, and pressure drop. A multi-hole plate with gradual hole diameter change in three steps showed the best uniformity of flow within the conditions suggested in this work.