• 제목/요약/키워드: Nox Emissions

검색결과 732건 처리시간 0.025초

수소를 첨가한 디젤엔진의 연소 및 배기특성에 관한 실험적 연구 (Experimental Study on Combustion and Emission Characteristics of Diesel Engine with Hydrogen Application)

  • 오정모
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.203-209
    • /
    • 2017
  • The International maritime organization(IMO), in an effort to slow down the global warming, proposes reduction in ship's speed as a way to lower the rate emissions from ships. In addition, since ship's fuel cost have been increased, the shipping volumes, fuel-saving technology are being required urgently. Therefore, in this present study, a method of reducing the fuel cost that can improve the performance of the diesel engine was tried by introducing a predetermined amount (0.1~0.3% of the mass amount of fuel used) of hydrogen fuel additive. The experimental conditions of the test engine were 1500rpm and torque BMEP-10b ar. The engine performances (power output, fuel consumption rate, p-max, exhaust temperature) were compared before and after addition of hydrogen fuel additives. This experimental study confirmed reducing at least 2% fuel consumption and 2.19% NOx emission.

커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교 (I) - 실제 직접분사식 디젤엔진에서의 사전분사 특성 분석 - (Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (I))

  • 이진욱
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.25-30
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for driving the injector.

2단 분사 방식을 적용한 디젤 DI-HCCI 연소특성에 관한 연구 (A Study on the Diesel DI-HCCI Combustion Characteristics using 2-stage Injection Method)

  • 정재우;강정호;김병수;강우;김현철
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.66-73
    • /
    • 2004
  • In this study, combustion characteristics and various performances of a Diesel fuel DI-HCCI engine using 2-stage injection method were investigated. From these researches, application ability of 2-stage injection strategy to a DI-HCCI engine was confirmed and improvement methods of performances were considered. As the results, Using 2-stage injection method, without change of engine specifications and loss of IMEP, exhaust of NOx and Smoke emissions could be reduced to about 1/3 (at 1400rpm, IMEP 6bar) compared to conventional Diesel combustion.

이멀션유용 방사상 핀 정적믹서 개발 (Development of Radial Fin Static Mixers for Emulsion Oil)

  • 김기성;박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.904-911
    • /
    • 2001
  • The fuels of water-in-oil emulsion have a potential of reducing PM(Particulate Matter) and NOx emissions, and increasing combustion efficiency in the furnaces and the burners. For making the most of the beneficial of the secondary atomization due to the microexplosion, the water droplets distributed in the oil must have the optimal sizes. The purpose of this paper is to investigate the water droplet size distribution characteristics of the different types of the static mixers. For analysis the size distribution characteristics efficiently, image analysis system wes constructed and an appropriate image processing algorithm was developed. Two kinds of static mixers: Kenics type and RF type, were tested. As a results, RF type static mixer shows a better characteristics in the mean drop size, particularly in the condition of high water content.

  • PDF

가압유동층연소로에서 석탄의 연소 및 배가스특성 연구 (A Study on Combustion & Flue Gas Characteristics of Coal at Pressurized Fluidized Bed Combustor)

  • 한근희;오동진;류정인;진경태
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.677-686
    • /
    • 2000
  • The characteristics of combustion and of emissions in pressurized fluidized bed combustor are investigated. The pressure of the combustor is fixed at 6 atm, and the combustion temperatures are set to 850, 900, and $950^{\circ}C$. The gas velocities are 0.9, 1.1, and 1.3 m/s. The excess air ratio is varied from 5 to 35%. The coal used in the experiment is Shenhwa coal in China. All experiments are executed at 2m bed height. Consequently, NOx & $N_2O$ concentration in the flue gas is increased with incresing excess air ratio but $SO_2$ concentration is decreased with incresing excess air ratio. CO concentration is maintained below 100ppm at over 15% of excess air ratio.

LPG액상분상엔진의 분사특성이 성능에 미치는 영향 (Effect of Injection Characteristics on Performance in a LPLi Engine)

  • 김창기;이진욱;강건용
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.46-52
    • /
    • 2004
  • An LPG engine (KL6i) for heavy duty vehicle has been developed using liquid phase LPG injection (LPLi) system, which has regarded as one of next generation LPG fuel supply systems. For the KL6i engine, lean burn technology was introduced to minimize the thermal loading and NOx emissions due to an increase of the engine power. In this work, injection timing and piston bowl shape were investigated for the stabilization of lean burn characteristics. Experimental results reveals that fuel stratification induced by these parameters is most effective strategy to extend lean combustion limit in the LPLi system.

  • PDF

Diesel Surrogate 상세 반응 기구를 이용한 HCCI 엔진의 연소 특성에 관한 수치해석 연구 (A Numerical Study of Combustion Characteristics for HCCI Engine with Detailed Diesel Surrogate Chemical Mechanism)

  • 이원준;이승로;이창언
    • 한국연소학회지
    • /
    • 제16권2호
    • /
    • pp.9-15
    • /
    • 2011
  • Homogeneous charge compression ignition(HCCI) is the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process is mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. In this paper, combustion characteristics of HCCI engine with suggested diesel surrogate(heptane/toluene mixture fuel) reaction mechanism were numerically investigated by heptane/toluene mixture ratio and EGR ratio. As results, the ignition timing became faster with increasing of heptane, and an initial oxidation and the ignition timing of the mixture fuel were affected by heptane and toluene, respectively.

반응물 분사조건에 따른 무화염 연소특성 연구 (Combustion Characteristics of Flameless Combustion by Reactants Injection Conditions)

  • 홍성원;이필형;황상순
    • 한국연소학회지
    • /
    • 제18권2호
    • /
    • pp.8-16
    • /
    • 2013
  • The flameless combustion has been considered as one of the promising combustion technology for high thermal efficiency, reducing NOx and CO emissions. In this paper, the effect of air and fuel injection condition on formation of flameless combustion was analyzed using three dimensional numerical simulation. The results show that the high temperature region and the average temperature was decreased due to increase of recirculation ratio when air velocity is increased. The average temperature was also affected by entrainment length. Generally mixing effect was enhanced at low entrainment length and dilution was dominated at high entrainment length. This entrainment length was greatly affected by air and fuel injection velocity and distance between air and fuel. It is also found that the recirculation ratio and dilution effect were generally increased by entrainment length and the recirculation ratio, mixing and dilution effect are the significant factor for design of flameless combustion system.

잔류가스 추정 기법을 이용한 EGR율의 예측 (Estimation of Exhaust Gas Recirculation using In-Cylinder Residual Gas Fraction in an SI Engine)

  • 김득상;김성철;황승환;조용석;엄인용
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.55-60
    • /
    • 2004
  • Residual gas acts as a diluent which results in reducing the in-cylinder temperature as well as the flame speed, significantly affecting fuel economy, NOx emissions and combustion stability. Therefore it is important to determine the residual gas fraction as a function of the engine operating parameters accurately. However, the determination of the residual gas fraction is very sophisticated due to the unsteady state of induction and exhaust process. There has been little work toward the development of a generally applicable model for quantitative predictions of residual gas fraction. In this paper, a simple model for calculating the residual gas fraction in SI engines was suggested. The amount of fresh air was evaluated through AFR and fuel consumption. After this, from the intake temperature and pressure, the amount of total cylinder-charging gas was estimated. The residual gas fraction was derived by comparing the total charging and fresh air. This results coincide with measured EGR value very well.

흡기관내 와류생성기가 압축착화엔진의 수분 농도 분포 및 연소성능 향상에 미치는 영향 (Effect of Vortex Generator in Intake Pipe on the Moisture Concentration Distributions and Combustion Performance in a CI Engine)

  • 정석훈;서현규
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.169-174
    • /
    • 2018
  • In this work, optimization of blade shape for the improvement of mixture formation and vortex of intake port was performed by numerically, and the combustion performance of CI engine with optimized blade shape was investigated. To achieve this, 3 types of blade shape were studied under the different air flow mass conditions and the numerical results were investigated in terms of humidification water, moisture concentration, and velocity distributions. Evaporated liquid mass was also compared under various test conditions to reveal the turbulent intensity in an intake port. It was observed that the optimized blade shape can improve the humidification water, moisture concentration, and velocity distributions of intake port inside. The evaporated liquid mass was also increased under the conditions with blade. Especially, low NOx emissions was observed with optimized blade condition.