• 제목/요약/키워드: Novel virus

검색결과 293건 처리시간 0.023초

Inhibition of HIV-1 Pretense by Novel Dipeptide Isosteres Containing 2-Isoxazoline or $\alpha$-Hydroxy Ketomethylene

  • Kim, Do-Hyung;Park, Kwan-Yong;Chung, Yong-Jun;Kim, Byeang-Hyean
    • Biomolecules & Therapeutics
    • /
    • 제2권2호
    • /
    • pp.155-160
    • /
    • 1994
  • Human immunodeficiency virus type 1 (HIV-1) protease is essential for the replication of the virus and it is therefore an attractive target for antiviral drugs of HIV-1. Several dipeptide isosteres containing 2-isoxazoline or $\alpha$-hydroxy ketomethylene have been synthesized and their inhibitory effects on the HIV-1 protease examined. The enzymatically active HIV-1 protease was purified to homogeniety from E. coli transformed with a recombinant plasmid (pMAL-pro) containing the entire gene encoding the protease. The purified protease had the substrate specificity with Km value of 9.8$\mu$M when an undecapeptide His-Lys-Ala-Arg-Val-Leu-(p-nitro)Phe-Glu-Ala-Nle-Ser-amide was used as a substrate, and the products from the substrate after specific cleavage by HIV-1 protease were analyzed by HPLC. The synthetic compounds containing dipeptide isosteres showed specific inhibitory effects while a dipeptide isostere containing an isoxazoline ring inhibited the HIV-1 protease competitively with Ki value of 500 $\mu$M. Even if the inhibition effects of HIV-1 protease were not very high, these novel dipeptide isosteres can be used as key structural moieties for developing specific inhibitors of HIV-1 protease.

  • PDF

Construction of a Novel Baculovirus Autographa californica Nuclear Polyhedrosis Virus Producing the Fluorescent Polyhedra

  • Je, Yeon-Ho;Jin, Byung-Rae;Roh, Jong-Yul;Chang, Jin-Hee;Kang, Seok-Kwon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제1권1호
    • /
    • pp.19-23
    • /
    • 2000
  • A novel recombinant baculovirus Autographa californica nuclear polyhedrosis virus (ACNPV) producing the green fluorescent polyhedra was constructed and characterized. The recombinant virus was stably produced fluorescent polyhedra in the infected cells and the morphology of the polyhedra was nearly similar to that of wild-type AcNPV. For the production of the fluorescent polyhedral the green fluorescent protein (GFP) gene was introduced under the control of polyhedrin gene promoter of AcNPV by translational fusion in the front and back of intact polyhedrin gene. The recombinant baculovirus was named as CXEP, As expected, the 93 kDa fusion protein was expressed in the CXEP-infected cells. Interestingly, however, the cells infected with CXEP also showed a 33 kDa protein band as cells infected with wild-type AcNPV. The results of Southern blot analysis and plaque assay suggested that two types of baculoviruses expressing the GFP fusion protein or only native polyhedrin were formed through homologous recombination between two polyhedrin genes in the same orientation. Thus, this system can be applied for the production of recombinant polyhedra with foreign gene product of diverse interest.

  • PDF

Reproduction of Epstein-Barr Virus Infection and Pathogenesis in Humanized Mice

  • Fujiwara, Shigeyoshi
    • IMMUNE NETWORK
    • /
    • 제14권1호
    • /
    • pp.1-6
    • /
    • 2014
  • Epstein-Barr virus (EBV) is etiologically associated with a variety of diseases including lymphoproliferative diseases, lymphomas, carcinomas, and autoimmune diseases. Humans are the only natural host of EBV and limited species of new-world monkeys can be infected with the virus in experimental conditions. Small animal models of EBV infection, required for evaluation of novel therapies and vaccines for EBV-associated diseases, have not been available. Recently the development of severely immunodeficient mouse strains enabled production of humanized mice in which human immune system components are reconstituted and express their normal functions. Humanized mice can serve as infection models for human-specific viruses such as EBV that target cells of the immune system. This review summarizes recent studies by the author's group addressing reproduction of EBV infection and pathogenesis in humanized mice.

Systems biology of virus-host signaling network interactions

  • Xue, Qiong;Miller-Jensen, Kathryn
    • BMB Reports
    • /
    • 제45권4호
    • /
    • pp.213-220
    • /
    • 2012
  • Viruses have evolved to manipulate the host cell machinery for virus propagation, in part by interfering with the host cellular signaling network. Molecular studies of individual pathways have uncovered many viral host-protein targets; however, it is difficult to predict how viral perturbations will affect the signaling network as a whole. Systems biology approaches rely on multivariate, context-dependent measurements and computational analysis to elucidate how viral infection alters host cell signaling at a network level. Here we describe recent advances in systems analyses of signaling networks in both viral and non-viral biological contexts. These approaches have the potential to uncover virus- mediated changes to host signaling networks, suggest new therapeutic strategies, and assess how cell-to-cell variability affects host responses to infection. We argue that systems approaches will both improve understanding of how individual virus-host protein interactions fit into the progression of viral pathogenesis and help to identify novel therapeutic targets.

Construction of a Genetic Information Database for Analysis of Oncolytic Viruses

  • Cho, Myeongji;Son, Hyeon Seok;Kim, Hayeon
    • International journal of advanced smart convergence
    • /
    • 제9권1호
    • /
    • pp.90-97
    • /
    • 2020
  • Oncolytic viruses are characterized by their ability to selectively kill cancer cells, and thus they have potential for application as novel anticancer agents. Despite an increase in the number of studies on methodologies involving oncolytic viruses, bioinformatic studies generating useful data are lacking. We constructed a database for oncolytic virus research (the oncolytic virus database, OVDB) by integrating scattered genetic information on oncolytic viruses and proposed a systematic means of using the biological data in the database. Our database provides data on 14 oncolytic viral strains and other types of viruses for comparative analysis. We constructed the OVDB using the basic local alignment search tool, and therefore can provides genetic information on highly homologous oncolytic viruses. This study contributes to facilitate systematic bioinformatics research, providing valuable data for development of oncolytic virus-based anticancer therapies.

Isolation and Physiological Characterization of a Novel Algicidal Virus Infecting the Marine Diatom Skeletonema costatum

  • Kim, JinJoo;Kim, Chang-Hoon;Youn, Seok-Hyun;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • 제31권2호
    • /
    • pp.186-191
    • /
    • 2015
  • Diatoms are a major component of the biological community, serving as the principal primary producers in the food web and sustaining oxygen levels in aquatic environments. Among marine planktonic diatoms, the cosmopolitan Skeletonema costatum is one of the most abundant and widespread species in the world's oceans. Here, we report the basic characteristics of a new diatom-infecting S. costatum virus (ScosV) isolated from Jaran Bay, Korea, in June 2008. ScosV is a polyhedral virus (45-50 nm in diameter) that propagates in the cytoplasm of host cells and causes lysis of S. costatum cultures. The infectivity of ScosV was determined to be strain- rather than species-specific, similar to other algal viruses. The burst size and latent period were roughly estimated at 90-250 infectious units/cell and <48 h, respectively.

Flavonoids as Novel Therapeutic Agents Against Chikungunya Virus Capsid Protein: A Molecular Docking Approach

  • E. Vadivel;Gundeep Ekka;J. Fermin Angelo Selvin
    • 대한화학회지
    • /
    • 제67권4호
    • /
    • pp.226-235
    • /
    • 2023
  • Chikungunya fever has a high morbidity rate in humans and is caused by chikungunya virus. There are no treatments available until now for this particular viral disease. The present study was carried out by selecting 19 flavonoids, which are available naturally in fruits, vegetables, tea, red wine and medicinal plants. The molecular docking of selected 19 flavonoids was carried out against the Chikungunya virus capsid protein using the Autodock4.2 software. Binding affinity analysis based on the Intermolecular interactions such as Hydrogen bonding and hydrophobic interactions and drug-likeness properties for all the 19 flavonoids have been carried out and it is found that the top four molecules are Chrysin, Fisetin, Naringenin and Biochanin A as they fit to the chikungunya protein and have binding energy of -8.09, -8.01, -7.6, and 7.3 kcal/mol respectively. This result opens up the possibility of applying these compounds in the inhibition of chikungunya viral protein.

First Report of Zucchini yellow mosaic virus on Hollyhock (Althaea rosea)

  • Park, Won-Mok;Park, Seung-Kook;Yoon, Ju-Yeon;Ryu, Ki-Hyun;Park, Jang-Kyung
    • The Plant Pathology Journal
    • /
    • 제18권3호
    • /
    • pp.121-125
    • /
    • 2002
  • This study was conducted to determine the causal virus that naturally infected hollyhock (Althaea rosea) plant showing mild mosaic symptom in 1999. Flexuous virus particles were found in the cytoplasm of plant tissue from infected hollyhock under transmissible electron microscopy. A virus from the genus Potyvirus under the family Potyviridae was isolated and was maintained on Chenopodium quinoa for three passages. Chlorotic local legions were used to inoculate 20 species of indicator plants. The virus infected all the tested cucurbit plants, but failed to infect Nicotiana benthamiana. Based on the host range test and RT-PCR analysis, the potyvirus was identified as a strain of Zucchini yellow mosaic virus-A (ZYMV-A), one of the major pathogens of cucurbits. Infectivity analysis showed that ZYMV-A induced faster systemic symptom than ZYMV-Cu on squash and other cucurbit plants, suggesting that ZYMV-A was a more severe strain. To better characterize ZYMV-A, Western blot assay was carried rout to the coat protein (CP) of the virus using ZYMV-specific antiserum with ZYMV-Cu and other potyviruses. The CP of the virus reacted strongly with the antiserum against ZYMV, and other tested antisera did not react with the CP of ZYMV-A. Results strongly suggest that the potyvirus infecting hollyhock was a novel strain of ZYMV. This is the first report on ZYMV as the causal virus infecting hollyhock in Korea.

Repurposing Screens of FDA-Approved Drugs Identify 29 Inhibitors of SARS-CoV-2

  • Ku, Keun Bon;Shin, Hye Jin;Kim, Hae Soo;Kim, Bum-Tae;Kim, Seong-Jun;Kim, Chonsaeng
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1843-1853
    • /
    • 2020
  • COVID-19, caused by the novel coronavirus SARS-CoV-2, has spread globally and caused serious social and economic problems. The WHO has declared this outbreak a pandemic. Currently, there are no approved vaccines or antiviral drugs that prevent SARS-CoV-2 infection. Drugs already approved for clinical use would be ideal candidates for rapid development as COVID-19 treatments. In this work, we screened 1,473 FDA-approved drugs to identify inhibitors of SARS-CoV-2 infection using cell-based assays. The antiviral activity of each compound was measured based on the immunofluorescent staining of infected cells using anti-dsRNA antibody. Twenty-nine drugs among those tested showed antiviral activity against SARS-CoV-2. We report this new list of inhibitors to quickly provide basic information for consideration in developing potential therapies.

Rapid Identification of Jasmine Virus H Infecting Ixora coccinea by Nanopore Metatranscriptomics

  • Sung-Woong Kim;Hyo-Jeong Lee;Sena Choi;In-Sook Cho;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • 제39권3호
    • /
    • pp.303-308
    • /
    • 2023
  • The global climate change and international trade have facilitated the movement of plants across borders, increasing the risk of introducing novel plant viruses in new territories. Ixora coccinea exhibited virus-like foliar symptoms, including mosaic and mild mottle. An Oxford Nanopore Technologies-based compact and portable MinION platform was used to identify the causal viral pathogen. The complete genome sequence of jasmine virus H (JaVH; 3867 nt, JaVH-CNU) was determined and found to share 88.4-90.3% nucleotide identity with that of Jasminum sambac JaVH isolate in China. Phylogenetic analysis based on the complete amino acid sequences of RNA-dependent RNA polymerase and coat protein revealed that JaVH-CNU was grouped separately with other JaVH isolates. This is the first report of a natural JaVH infection of I. coccinea. The application of rapid nanopore sequencing for plant virus identification was demonstrated and is expected to provide accurate and rapid diagnosis for virus surveillance.