DOI QR코드

DOI QR Code

Construction of a Genetic Information Database for Analysis of Oncolytic Viruses

  • Cho, Myeongji (Institute of Health and Environment, Seoul National University) ;
  • Son, Hyeon Seok (Laboratory of Computational Biology & Bioinformatics, Institute of Public Health and Environment, Graduate School of Public Health, Seoul National University) ;
  • Kim, Hayeon (Department of Biomedical Laboratory Science, Kyungdong University)
  • Received : 2020.01.10
  • Accepted : 2020.01.19
  • Published : 2020.03.31

Abstract

Oncolytic viruses are characterized by their ability to selectively kill cancer cells, and thus they have potential for application as novel anticancer agents. Despite an increase in the number of studies on methodologies involving oncolytic viruses, bioinformatic studies generating useful data are lacking. We constructed a database for oncolytic virus research (the oncolytic virus database, OVDB) by integrating scattered genetic information on oncolytic viruses and proposed a systematic means of using the biological data in the database. Our database provides data on 14 oncolytic viral strains and other types of viruses for comparative analysis. We constructed the OVDB using the basic local alignment search tool, and therefore can provides genetic information on highly homologous oncolytic viruses. This study contributes to facilitate systematic bioinformatics research, providing valuable data for development of oncolytic virus-based anticancer therapies.

Keywords

References

  1. E. Kelly, and S.J. Russell. "History of Oncolytic Viruses: Genesis to Genetic Engineering", Molecular Therapy, Vol. 15, No. 4, pp. 651-659, 2007. DOI: http://doi.org/10.1038/sj.mt.6300108.
  2. L.K. Hawkins, N.R. Lemoine, and D. Kirn. "Oncolytic Biotherapy: A Novel Therapeutic Platform", The Lancet Oncology, Vol. 3, No. 1, pp. 17-26, 2002. DOI: https://doi.org/10.1016/S1470-2045(01)00618-0.
  3. B. Everts, and H.G. van der Poel. "Replication-selective oncolytic viruses in the treatment of cancer", Cancer Gene Therapy, Vol. 12, No. 2, pp. 141-161, 2005. DOI: https://doi.org/10.1038/sj.cgt.7700771.
  4. J.J. Davis, and B. Fang. "Oncolytic Virotherapy for Cancer Treatment: Challenges and Solutions", The Journal of Gene Medicine, Vol. 7, No. 11, pp. 1380-1389, 2005. DOI: https://doi.org/10.1002/jgm.800.
  5. S.J. Russell, K.W. Peng, and J.C. Bell. "Oncolytic virotherapy", Nature Biotechnology,Vol. 30, No. 7, pp. 658-670, 2012. DOI: https://doi.org/10.1038/nbt.2287.
  6. F. McCormick, "Future prospects for oncolytic therapy", Oncogene, Vol. 24, No. 52, pp. 7817-7819, 2005. DOI: https://doi.org/10.1038/sj.onc.1209064.
  7. J. Bell, and G. McFadden. "Viruses for tumor therapy", Cell Host Microbe, Vol. 15, No. 3, pp. 260-265, 2014. DOI: https://doi.org/10.1016/j.chom.2014.01.002.
  8. M.R. Kim, J.H. Lee, H.S. Son, and H. Kim, "HCoV-IMDB: Database for the Analysis of Interactions between HCoV and Host Immune Proteins", International Journal of Advanced Smart Convergence, Vol. 8, No. 1, pp. 1-8, 2019. DOI: http://dx.doi.org/10.7236/IJASC.2019.8.1.1.
  9. M. Je, H.S. Son, and H. Kim, "Data-processing pipeline and database design for integrated analysis of mycoviruses", International Journal of Advanced Smart Convergence, Vol. 8, No. 3, pp. 115-122, 2019. DOI: http://dx.doi.org/10.7236/IJASC.2019.8.3.115.
  10. D.A. Benson, M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and E.W. Sayers. "GenBank", Nucleic Acids Research, Vol. 41, No. D1, pp. D36-D42, 2013. DOI: http://doi.org/10.1093/nar/gks1195.
  11. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, "Basic local alignment search tool", Journal of Molecular Biology, Vol. 215, No. 3, pp. 403-410, 1990. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2.
  12. M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, and D.G. Higgins, "Clustal W and Clustal X version 2.0", Bioinformatics, Vol. 23, No. 21, pp. 2947-2948, 2007. DOI: http://doi.org/10.1093/bioinformatics/btm404.
  13. R.C. Edgar, "MUSCLE: multiple sequence alignment with high accuracy and high throughput", Nucleic Acids Research, Vol. 32, No. 5, pp. 1792-1797, 2004. DOI: https://doi.org/10.1093/nar/gkh340.
  14. S. Kumar, G. Stecher, and K. Tamura, "MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets", Molecular Biology and Evolution, Vol. 33, No. 7, pp. 1870-1874, 2016. DOI: https://doi.org/10.1093/molbev/msw054.