• Title/Summary/Keyword: Novel cancer therapy

Search Result 222, Processing Time 0.029 seconds

Screening and Characterization of a Novel RNA Aptamer That Specifically Binds to Human Prostatic Acid Phosphatase and Human Prostate Cancer Cells

  • Kong, Hoon Young;Byun, Jonghoe
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2'-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2'-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer.

Endpoint of Cancer Treatment: Targeted Therapies

  • Topcul, Mehmet;Cetin, Idil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4395-4403
    • /
    • 2014
  • Nowadays there are several limitations in cancer treatment. One of these is the use of conventional medicines which not only target cancer cells and thus also cause high toxicity precluding effective treatment. Recent elucidation of mechanisms that cause cancer has led to discovery of novel key molecules and pathways which have have become successful targets for the treatments that eliminate only cancer cells. These so-called targeted therapies offer new hope for millions of cancer patients, as briefly reveiwed here focusing on different types of agents, like PARP, CDK, tyrosine kinase, farnysyl transferase and proteasome inhibitors, monoclonal antibodies and antiangiogenic agents.

Synergistic Induction of Apoptosis by the Combination of an Axl Inhibitor and Auranofin in Human Breast Cancer Cells

  • Ryu, Yeon-Sang;Shin, Sangyun;An, Hong-Gyu;Kwon, Tae-Uk;Baek, Hyoung-Seok;Kwon, Yeo-Jung;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.473-481
    • /
    • 2020
  • Axl receptor tyrosine kinase has been implicated in cancer progression, invasion, and metastasis in various cancer types. Axl overexpression has been observed in many cancers, and selective inhibitors of Axl, including R428, may be promising therapeutic agents for several human cancers, such as breast, lung, and pancreatic cancers. Here, we examined the cell growth inhibition mediated by R428 and auranofin individually as well as in combination in the human breast cancer cell lines MCF-7 and MDA-MB-231 to identify new advanced combination treatments for human breast cancer. Our data showed that combination therapy with R428 and auranofin markedly inhibited cancer cell proliferation. Isobologram analyses of these cells indicated a clear synergism between R428 and auranofin with a combination index value of 0.73. The combination treatment promoted apoptosis as indicated by caspase 3 activation and poly (ADP-ribose) polymerase cleavage. Cancer cell migration was also significantly inhibited by this combination treatment. Moreover, we found that combination therapy significantly increased the expression level of Bax, a mitochondrial proapoptotic factor, but decreased that of the X-linked inhibitor of apoptosis protein. Furthermore, the suppression of cell viability and induction of Bax expression by the combination treatment were recovered by treatment with N-acetylcysteine. In conclusion, our data demonstrated that combined treatment with R428 and auranofin synergistically induced apoptosis in human breast cancer cells and may thus serve as a novel and valuable approach for cancer therapy.

Pharmacophore Development for Anti-Lung Cancer Drugs

  • Haseeb, Muhammad;Hussain, Shahid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8307-8311
    • /
    • 2016
  • Lung cancer is one particular type of cancer that is deadly and relatively common than any other. Treatment is with chemotherapy, radiation therapy and surgery depending on the type and stage of the disease. Focusing on drugs used for chemotherapy and their associated side effects, there is a need to design and develop new anti-lung cancer drugs with minimal side effects and improved efficacy. The pharmacophore model appears to be a very helpful tool serving in the designing and development of new lead compounds. In this paper, pharmacophore analysis of 10 novel anti-lung cancer compounds was validated for the first time. Using LigandScout the pharmacophore features were predicted and 3D pharmacophores were extracted via VMD software. A training set data was collected from literature and the proposed model was applied to the training set whereby validating and verifying similar activity as that of the most active compounds was achieved. Therefore pharmacophore develoipment could be recommended for further studies.

Novel Directions in Adjuvant Chemotherapy for Early Stage Epithelial Ovarian Cancer

  • Sakarya, Derya Kilic;Yetimalar, M Hakan;Ozbasar, Demir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4157-4160
    • /
    • 2015
  • Treatment of early stage ovarian cancer remains controversial despite advances in chemotherapeutic options. Over the past 30 years, molecular and clinicopathologic studies accelerated and treatment of ovarian cancer has undoubtedly improved although there is a debate as to whether this impacts outcome or not. More recently, the introduction of targeted therapy started a new era. Probably it is because early stage disease comprises a small portion of the epithelial ovarian cancer, studies have mostly ignored this group and still there is no clear consensus regarding systemic treatment of early-stage lesions. However this group of patients has the best chance of cure. In this review, we focus on current developments in the treatment of early stage ovarian cancer and query the options.

Targeted Therapies and Radiation for the Treatment of Head and Neck Cancer (두경부 암의 표적 지향적 방사선 치료)

  • Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.77-90
    • /
    • 2004
  • Purpose: The purpose of this review Is to provide an update on novel radiation treatments for head and neck cancer Recent Findings: Despite the remarkable advances In chemotherapy and radiotherapy techniques, the management of advanced head and neck cancer remains challenging. Epidermal growth factor receptor (EGFR) Is an appealing target for novel therapies In head and neck cancer because not only EGFR activation stimulates many important signaling pathways associated with cancer development and progression, and importantly, resistance to radiation. Furthermore, EGFR overexpression Is known to be portended for a worse outcome in patients with advanced head and neck cancer. Two categories of compounds designed to abrogate EGFR signaling, such as monoclonal antibodies (Cetuxlmab) and tyrosine kinase inhibitors (ZD1839 and 051-774) have been assessed and have been most extensively studied In preclinical models and clinical trials. Additional TKIs In clinical trials include a reversible agent, Cl-1033, which blocks activation of all erbB receptors. Encouraging preclinical data for head and neck cancers resulted In rapid translation Into the clinic. Results from Initial clinical trials show rather surprisingly that only minority of patients benefited from EGFR inhibition as monotherapy or In combination with chemotherapy. In this review, we begin with a brief summary of erbB- mediated signal transduction. Subsequently, we present data on prognostic-predictive value of erbB receptor expression in HNC followed by preclinlcal and clinical data on the role of EGFR antagonists alone or in combination with radiation In the treatment of HNC. Finally, we discuss the emerging thoughts on resistance to EGFR biockade and efforts In the development of multiple-targeted therapy for combination with chemotherapy or radiation. Current challenges for investigators are to determine (1 ) who will benefit from targeted agents and which agents are most appropriate to combine with radiation and/or chemotherapy, (2) how to sequence these agents with radiation and/or cytotoxlc compounds, (3) reliable markers for patient selection and verification of effective blockade of signaling in vivo, and (4) mechanisms behind intrinsic or acquired resistance to targeted agents to facilitate rational development of multi-targeted therapy, Other molecuiar-targeted approaches In head and neck cancer were briefly described, Including angloenesis Inhibitors, farnesyl transferase inhibitors, cell cycle regulators, and gene therapy Summary: Novel targeted theraples are highly appealing in advanced head and neck cancer, and the most premising strategy to use them Is a matter of intense Investigation.

Update on the Evidence Regarding Maintenance Therapy

  • Lee, Jeong Eun;Chung, Chae-Uk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Maintenance therapy has emerged as a novel therapeutic paradigm for advanced non-small-cell lung cancer (NSCLC). Maintenance therapy that aims to sustain a clinically favorable state after first-line chemotherapy has two strategies. Switch maintenance therapy entails switching to a new and non-cross-resistant agent in an alternating or sequential manner, on completion of first-line chemotherapy. Continuous maintenance therapy keeps ongoing administration of a component of the current regimen after four to six cycles of chemotherapy, if there is a stable disease, or better response. Both maintenance therapies can be continued, until disease progression. The potential evidence regarding maintenance therapy includes providing the opportunity to receive additional treatment, through sustaining tumor shrinkage, and delayed emergence of tumor-related symptom. Thus far, debates over the parameters used to predict the effectiveness of maintenance therapy, financial burden, and uncertainty of improving the quality of life exist. Despite many debates, maintenance therapy, which is currently recommended, has been disclosed to be beneficial.

A Novel Monoclonal Antibody Induces Cancer Cell Apoptosis and Enhances the Activity of Chemotherapeutic Drugs

  • Xu, Heng;Tian, Yan-Na;Dun, Bo-Ying;Liu, Hai-Tao;Dong, Guang-Kuo;Wang, Jin-Hua;Lu, Shang-Su;Chen, Bo;She, Jin-Xiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4423-4428
    • /
    • 2014
  • A novel monoclonal antibody (mAb), known as AC10364, was identified from an antibody library generated by immunization of mice with human carcinoma cells. The mAb recognized proteins in lysates from multiple carcinoma cell lines. Cell cytotoxicity assays showed that AC10364 significantly inhibited cell growth and induced apoptosis in multiple carcinoma cell lines, including Bel/fu, KATO-III and A2780. Compared with mAb AC10364 or chemotherapeutic drugs alone, the combination of mAb AC10364 with chemotherapeutic drugs demonstrated enhanced growth inhibitory effects on carcinoma cells. These results suggest that mAb AC10364 is a promising candidate for cancer therapy.

Artificial Intelligence in the Pathology of Gastric Cancer

  • Sangjoon Choi;Seokhwi Kim
    • Journal of Gastric Cancer
    • /
    • v.23 no.3
    • /
    • pp.410-427
    • /
    • 2023
  • Recent advances in artificial intelligence (AI) have provided novel tools for rapid and precise pathologic diagnosis. The introduction of digital pathology has enabled the acquisition of scanned slide images that are essential for the application of AI. The application of AI for improved pathologic diagnosis includes the error-free detection of potentially negligible lesions, such as a minute focus of metastatic tumor cells in lymph nodes, the accurate diagnosis of potentially controversial histologic findings, such as very well-differentiated carcinomas mimicking normal epithelial tissues, and the pathological subtyping of the cancers. Additionally, the utilization of AI algorithms enables the precise decision of the score of immunohistochemical markers for targeted therapies, such as human epidermal growth factor receptor 2 and programmed death-ligand 1. Studies have revealed that AI assistance can reduce the discordance of interpretation between pathologists and more accurately predict clinical outcomes. Several approaches have been employed to develop novel biomarkers from histologic images using AI. Moreover, AI-assisted analysis of the cancer microenvironment showed that the distribution of tumor-infiltrating lymphocytes was related to the response to the immune checkpoint inhibitor therapy, emphasizing its value as a biomarker. As numerous studies have demonstrated the significance of AI-assisted interpretation and biomarker development, the AI-based approach will advance diagnostic pathology.

Cervical Cancer Gene Therapy by Gene Loaded PEG-PLA Nanomedicine

  • Liu, Bo;Han, Shu-Mei;Tang, Xiao-Yong;Han, Li;Li, Chang-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4915-4918
    • /
    • 2014
  • Background and Aims: Advances in the treatment of cervical cancer over the last decade have predominantly involved the development of genes directed at molecular targets. Gene therapy is recognized to be a novel method for the treatment of cervical cancer. Genes can be administered into target cells via nanocarriers. This study aimed to develop systemically administrable nano-vectors. Floate (Fa) containing gene loaded nanoparticles (NPs) could target HeLa human cervical cancer cells through combination with receptors on the cells to increase the nuclear uptake of genetic materials. Methods: Fa was linked onto Poly (ethylene glycol)-b-poly (D, L-lactide) (PEG-PLA) to form Fa-PEG-PLA, and the resulting material was used to load plasmids of enhanced green fluorescence protein (pEGFP) to obtain gene loaded nanoparticles (Fa-NPs/DNA). Physical-chemical characteristics, in vitro release and cytotoxicity of Fa-NPs/DNA were evaluated. The in vitro transfection efficiency of Fa-NPs/DNA was evaluated in HeLa cells and human umbilical vein endothelial cells (HUVEC). PEG-PLA without Fa was used to load pEGFP from NPs/DNA as a control. Results: Fa-NPs/DNA has a particle size of 183 nm and a gene loading quantity of 92%. After 72h of transfection, Fa-NPs/DNA displayed over 20% higher transfection efficiency than NPs/DNA and 40% higher than naked DNA in HeLa cells. However, in HUVECs, no significant difference appeared between Fa-NPs/DNA and NPs/DNA. Conclusions: Fa-PEG-PLA NPs could function as excellent materials for gene loading. This nano-approach could be used as tumor cell targeted medicine for the treatment of cervical cancer.