• 제목/요약/키워드: Novel Process

검색결과 2,551건 처리시간 0.033초

Fabrication Process and Properties of Carbon Nanotube/Cu Nanocomposites

  • Cha, Seung-I.;Kim, Kyung-T.;Mo, Chan-B.;Hong, Soon-H.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.366-367
    • /
    • 2006
  • Carbon nanotubes (CNTs) have attracted remarkable attention as reinforcement for composites owing to their outstanding mechanical properties. The CNT/Cu nanocomposite is fabricated by a novel fabrication process named molecular level process. The novel process for fabricating CNT/Cu composite powders involves suspending CNTs in a solvent by surface functionalization, mixing Cu ions with CNT suspension, drying, calcination and reduction. The molecular level process produces CNT/Cu composite powders whereby the CNTs are homogeneously implanted within Cu powders. The mechanical properties of CNT/Cu nanocomposite, consolidated by spark plasma sintering of CNT/Cu composite powders, shows about 3 times higher strength and 2 times higher Young's modulus than those of Cu matrix.

  • PDF

A SDR/DDR 4Gb DRAM with $0.11\mu\textrm{m}$ DRAM Technology

  • Kim, Ki-Nam
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권1호
    • /
    • pp.20-30
    • /
    • 2001
  • A 1.8V $650{\;}\textrm{mm}^2$ 4Gb DRAM having $0.10{\;}\mu\textrm{m}^2$ cell size has been successfully developed using 0.11 $\mu\textrm{m}$DRAM technology. Considering manufactur-ability, we have focused on developing patterning technology using KrF lithography that makes $0.11{\;}\mu\textrm{m}$ DRAM technology possible. Furthermore, we developed novel DRAM technologies, which will have strong influence on the future DRAM integration. These are novel oxide gap-filling, W-bit line with stud contact for borderless metal contact, line-type storage node self-aligned contact (SAC), mechanically stable metal-insulator-silicon (MIS) capacitor and CVD Al process for metal inter-connections. In addition, 80 nm array transistor and sub-80 nm memory cell contact are also developed for high functional yield as well as chip performance. Many issues which large sized chip often faces are solved by novel design approaches such as skew minimizing technique, gain control pre-sensing scheme and bit line calibration scheme.

  • PDF

1920년대 영화소설의 이미지 텍스트 연구 (The Theory of the Image of the "Cinema-novel" in 1920s)

  • 공성수
    • 한국콘텐츠학회논문지
    • /
    • 제17권11호
    • /
    • pp.501-514
    • /
    • 2017
  • 1920년대 영화소설은 영화적 상상력을 바탕으로 다양한 매체효과를 활용해 구성된 서사물이며, 독서 과정에서 끊임없이 영화의 이미지를 환기할 수 있도록 고안된다. 영화 매체의 흥행과 함께 나타난 이 독특한 장르의 형성과 발전 과정에는 근대적인 예술매체의 형식을 고민하고, 그에 걸맞는 콘텐츠를 만들기 위해 노력한 1920년대 예술의 시대적인 특성이 고스란히 담겨있다. 본고는 혼종의 매체 시대, 파격적인 장르 실험의 한 사례로서 '영화소설'에 주목하고, 영화소설이 어떻게 하나의 장르로서 수렴해갔는지 살피고자 한다. 무엇보다도 이 과정에서 영화, 소설, 사진, 그리고 삽화가 결합된 융합 텍스트의 미학적 원리를 규명하는 일은, 본고의 중요한 목표가 될 것이다.

Wide viewing angle and fast response time using novel vertical-alignment - 1/4 ${\pi}$ cell mode

  • Lee, Jeong-Ho;Seo, Dae-Shik;Kim, Hyang-Yul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.9-10
    • /
    • 2000
  • The wide viewing angle and fast response time characteristics of negative dielectric anisotropy nematic liquid crystal (NLC) using a novel vertical-alignment (VA) - 1/4 ${\pi}$ cell mode on a homeotropic alignment layer were investigated. Good voltage-transmittance curves and low driving voltage using the novel VA - 1/4 ${\pi}$ cell mode without a negative compensation film were obtained. The iso-viewing angle characteristics of NLC using the novel VA - 1/4 ${\pi}$ cell mode without a negative compensation film can be achieved. The fast response time of 24.4 ms in NLC was successfully measured. The iso-viewing angle, fast response time, and low driving voltage characteristics using the novel VA - 1/4 ${\pi}$ cell mode can be achieved.

  • PDF

마이크로 밀링과 X-선 리소그래피 공정을 이용한 다층 마이크로 구조물 제작 공정 개발 (Development of a Novel Fabrication Process for Multi-layered Microstructures using a Micro Milling and Deep X-ray Lithography)

  • 김종현;장석상;임근배
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.269-275
    • /
    • 2014
  • Conventional machining technologies such as a milling process have limitations in accuracy to fabricate microstructures. Deep X-ray lithography using the synchrotron radiation is a promising micromachining process with an excellent accuracy, whereas there are difficulties in the fabrication of multi-layered structures. Therefore, it is mainly used for fabricating simple mono-layered microstructures with a high aspect ratio. In this study, a novel technology for fabricating multi-layered microstructures is proposed by combining two processes. In advance, an X-ray resist material is cut and machined into various shapes and heights by the micro milling process. Subsequent X-ray irradiation process facilitates the fabrication of multi-layered microstructures. The proposed technology can overcome the limitation of the pattern accuracy in conventional milling process and the difficulty of the multi-layered machining in x-ray process. The usefulness of the proposed technology is demonstrated in this study by applying the technique in the realization of various multi-layered microstructures.

Interconnection Technology Based on InSn Solder for Flexible Display Applications

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung;Lee, Jin Ho
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.387-394
    • /
    • 2015
  • A novel interconnection technology based on a 52InSn solder was developed for flexible display applications. The display industry is currently trying to develop a flexible display, and one of the crucial technologies for the implementation of a flexible display is to reduce the bonding process temperature to less than $150^{\circ}C$. InSn solder interconnection technology is proposed herein to reduce the electrical contact resistance and concurrently achieve a process temperature of less than $150^{\circ}C$. A solder bump maker (SBM) and fluxing underfill were developed for these purposes. SBM is a novel bumping material, and it is a mixture of a resin system and InSn solder powder. A maskless screen printing process was also developed using an SBM to reduce the cost of the bumping process. Fluxing underfill plays the role of a flux and an underfill concurrently to simplify the bonding process compared to a conventional flip-chip bonding using a capillary underfill material. Using an SBM and fluxing underfill, a $20{\mu}m$ pitch InSn solder SoP array on a glass substrate was successfully formed using a maskless screen printing process, and two glass substrates were bonded at $130^{\circ}C$.

Novel Bumping and Underfill Technologies for 3D IC Integration

  • Sung, Ki-Jun;Choi, Kwang-Seong;Bae, Hyun-Cheol;Kwon, Yong-Hwan;Eom, Yong-Sung
    • ETRI Journal
    • /
    • 제34권5호
    • /
    • pp.706-712
    • /
    • 2012
  • In previous work, novel maskless bumping and no-flow underfill technologies for three-dimensional (3D) integrated circuit (IC) integration were developed. The bumping material, solder bump maker (SBM) composed of resin and solder powder, is designed to form low-volume solder bumps on a through silicon via (TSV) chip for the 3D IC integration through the conventional reflow process. To obtain the optimized volume of solder bumps using the SBM, the effect of the volumetric mixing ratio of resin and solder powder is studied in this paper. A no-flow underfill material named "fluxing underfill" is proposed for a simplified stacking process for the 3D IC integration. It can remove the oxide layer on solder bumps like flux and play a role of an underfill after the stacking process. The bumping process and the stacking process using the SBM and the fluxing underfill, respectively, for the TSV chips are carefully designed so that two-tier stacked TSV chips are sucessfully stacked.

Novel Anaerobic Two-Stage Process Producing Hydrogen as Well as Methane from Food Waste

  • Han, Sun-Kee;Kwon, Soo-Youl;Park, Dong-Uk;Yoon, Byong-Jun
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 국제학술대회
    • /
    • pp.394-398
    • /
    • 2005
  • This study aimed to develop a novel anaerobic two-stage process converting food waste to $H_2$ and $CH_2$. The anaerobic two-stage process was devised by combining hydrogen fermentation with methane fermentation. At the high loading rate of 12.3 kg $Vs/m^3/d$, it could remove 72.5%of VS and convert $VS_{removed}$ to $H_2$ (28.2%) and $CH_4$ (69.9%) on COD basis in 8 days.

  • PDF

Thiobacillus ferrooxidans 생물막과 화학적 방법에 의한 항화수소 처리 공정 개발

  • 정승호;장영선;차진명;김태원;이광연;오민하;박돈희
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.423-426
    • /
    • 2002
  • A novel process for $H_2S$ gas treatment has been introduced, based on the combined action of a chemical absorption step and a biological step involving the biocatalytic activity of the bacterium Thiobacillus ferrooxidans. The aim of this study is the development of a process for $H_2S$ elimination from gas streams based on that chemical/biological method. The immobilized biomass reactor/chemical adsorption system is suitable for application of the removal of $H_2S$. A double stage reactor was used for the experimental work. The removal efficiencies of over 99% were observed in the range of inlet $H_2S$ concentration from 200 to 1,000ppm. The novel process showed the stable elimination efficiencies of over 95% under the retention time range from 20 to 40sec at the 1,000ppm of $H_2S$ inlet concentration.

  • PDF

액체의 레이저 유기 절연파괴를 이용한 신개념 표면 세정 공정 (A novel surface cleaning process using laser-induced breakdown of liquid)

  • 장덕석;이종명;김동식
    • 한국레이저가공학회지
    • /
    • 제12권4호
    • /
    • pp.17-25
    • /
    • 2009
  • The surface cleaning method based on the laser-induced breakdown (LIB) of gas and subsequent plasma and shock wave generation can remove small particles from solid surfaces. In the laser shock cleaning (LSC) process, a high-power laser pulse induces optical breakdown of the ambient gas above the solid surface covered with contaminant particles. The subsequently created shock wave followed by a high-speed flow stream detaches the particles. In this work, a novel surface cleaning process using laser-induced breakdown of liquid is introduced and demonstrated. LIB of a micro liquid jet increases the shock wave intensity and thus removes smaller particle than the conventional LSC method. Experiments demonstrate that the cleaning force and cleaning efficiency are also increased significantly by this method.

  • PDF