DOI QR코드

DOI QR Code

Development of a Novel Fabrication Process for Multi-layered Microstructures using a Micro Milling and Deep X-ray Lithography

마이크로 밀링과 X-선 리소그래피 공정을 이용한 다층 마이크로 구조물 제작 공정 개발

  • 김종현 (포항공과대학교 기계공학과) ;
  • 장석상 (포항공과대학교 포항가속기연구소) ;
  • 임근배 (포항공과대학교 기계공학과)
  • Received : 2013.10.07
  • Accepted : 2014.02.17
  • Published : 2014.03.01

Abstract

Conventional machining technologies such as a milling process have limitations in accuracy to fabricate microstructures. Deep X-ray lithography using the synchrotron radiation is a promising micromachining process with an excellent accuracy, whereas there are difficulties in the fabrication of multi-layered structures. Therefore, it is mainly used for fabricating simple mono-layered microstructures with a high aspect ratio. In this study, a novel technology for fabricating multi-layered microstructures is proposed by combining two processes. In advance, an X-ray resist material is cut and machined into various shapes and heights by the micro milling process. Subsequent X-ray irradiation process facilitates the fabrication of multi-layered microstructures. The proposed technology can overcome the limitation of the pattern accuracy in conventional milling process and the difficulty of the multi-layered machining in x-ray process. The usefulness of the proposed technology is demonstrated in this study by applying the technique in the realization of various multi-layered microstructures.

Keywords

References

  1. Camara, M. A., Rubio, J. C. C., Abrao, A. M., and Davim, J. P., "State of the Art on Micromilling of Materials, a Review," J. Mater. Sci. Technol., Vol. 28, No. 8, pp. 673-685, 2012. https://doi.org/10.1016/S1005-0302(12)60115-7
  2. Jahan, M. P., Rahman, M., and Wong, Y. S., "A Review on the Conventional and Micro-Electrodischarge Machining of Tungsten Carbide," Int. J. Mach. Tools Manuf., Vol. 51, No. 12, pp 837-858, 2011. https://doi.org/10.1016/j.ijmachtools.2011.08.016
  3. Cheng, J., Liu, C., Shang, S., Liu, D., Perrie, W., and et al., "A Review of Ultrafast Laser Materials Micromachining," Opt. Laser. Technol., Vol. 46, pp. 88-102, 2013. https://doi.org/10.1016/j.optlastec.2012.06.037
  4. Melchels, F. P. W., Feijen, J., and Grijpma, D. W., "A Review on Stereolithography and its Applications in Biomedical Engineering," Biomaterials, Vol. 31, No. 24, pp. 6121-6130, 2010. https://doi.org/10.1016/j.biomaterials.2010.04.050
  5. Azimi, S., Song, J., Dang, Z. Y., Liang, H. D, and Breese, M. B. H., "Three-dimensional Silicon Micromachining," J. Micromech. Microeng., Vol. 22, No. 11, Paper No. 113001, 2012. https://doi.org/10.1088/0960-1317/22/11/113001
  6. Meyer, P., Schulz, J., Hahn, L., and Saile, V., "Why You will Use the Deep X-Ray LIGA Technology to Produce MEMS?" Microsyst. Technol., Vol. 14, No.9-11, pp. 1491-1497, 2008. https://doi.org/10.1007/s00542-007-0503-1
  7. Becker, E. W., Ehrfeld, W., Hagmann, P., Manner, A., and Munchmeyer, D., "Fabrication of Microstructures with High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Moulding (LIGA process)," Microelectron. Eng., Vol. 4, No. 1, pp. 35-56, 1986. https://doi.org/10.1016/0167-9317(86)90004-3
  8. Maleka, C. K. and Saile, V., "Applications of LIGA Technology to Precision Manufacturing of High-Aspect-Ratio Micro-Components and -systems: a review," Microelectron. J., Vol. 35, No. 2, pp. 131-143, 2004. https://doi.org/10.1016/j.mejo.2003.10.003
  9. Vora, K. D., Lochel, B., Harvey, E. C., Hayes, J. P., and Peele, A. G., "AFM-measured Surface Roughness of SU-8 Structures Produced by Deep X-ray Lithography," J. Micromech. Microeng., Vol. 16, No. 10, pp. 1975-1983, 2006. https://doi.org/10.1088/0960-1317/16/10/009
  10. Aigeldinger, G., Yang, C. -Y. P., Skala, D. M., Morse, D. H., Talin, A. A., and et al., "Influence of Mask Substrate Materials on Resist Sidewall in Deep X-ray Lithography," Microsyst. Technol., Vol. 14, No. 2, pp. 277-286, 2008.
  11. Vora, K. D., Shew, B. Y., Harvey, E. C., Hayes, J. P., and Peele, A. G., "Sidewall Slopes of SU-8 HARMST using Deep X-ray Lithography," J. Micromech. Microeng., Vol. 18, No. 3, Paper No. 035037, 2008. https://doi.org/10.1088/0960-1317/18/3/035037
  12. Malek, C. K., Jackson, K. H., Bonivert, W. D., and Hruby, J., "Masks for High Aspect Ratio X-ray Lithography," J. Micromech. Microeng., Vol. 6, No. 2, pp. 228-235, 1996. https://doi.org/10.1088/0960-1317/6/2/004
  13. Harris, C., Desta, Y., Kelly, K. W., and Calderon, G., "Inexpsensive, Quickly Producible X-ray Mask for LIGA," Microsyst. Technol., Vol. 5, No. 4, pp. 189-193, 1999. https://doi.org/10.1007/s005420050162
  14. Coane, P., Giasolli, R., Ledger, S., Lian, K., Ling, Z., and Gottert, J., "Fabrication of HARM Structures by Deep-X-ray Lithography using Graphite Mask Technology," Microsyst. Technol., Vol. 6, No. 3, pp 94-98, 2000. https://doi.org/10.1007/s005420050005
  15. Kinuta, S., Saita, Y., Kobayashi, M., Boerner, M., Saile, V., and Hosaka, S., "Polyimide-based X-ray Masks with Advanced Performance of Pattern Accuracy and Thermal Stability," Microsyst. Technol., Vol. 16, No. 8-9, pp. 1299-1302, 2010. https://doi.org/10.1007/s00542-010-1098-5
  16. Achenbach, S., Boerner, M., Kiunta, S., Bacher, W., Mohr, J., and et al., "Structure Quality in Deep X-ray Lithography Applying Commercial Polyimide-Based Masks," Microsyst. Technol., Vol. 13, No. 3-4, pp. 349-353, 2007.
  17. Pantenburg, F. J. and Mohr, J., "Influence of Secondary Effects on the Structure Quality in Deep X-ray Lithography," Nucl. Instrum. Meth. B., Vol. 97, No. 1-4, pp. 551-556, 1995. https://doi.org/10.1016/0168-583X(94)00732-2