• 제목/요약/키워드: Novel Phase State

검색결과 173건 처리시간 0.025초

슬라이딩 모드를 이용한 강인한 $H_{\infty}$ 제어기의 설계 (A Study on the $H_{\infty}$ Robust Controller of Sliding Mode)

  • 박승규;안호균;김민찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.747-749
    • /
    • 1998
  • A new $H_{\infty}$ robust controller is proposed by using Sliding Mode Control (SMC). The combination of $H_{\infty}$ with SMC is achieved by proposing a novel sliding surface which has a virtual state. This sliding surface has the nominal dynamics of an original system controlled by $H_{\infty}$ controller. Its design is based on the augumented system whose dynamics have one higher order than that of the original system. The reaching phase is removed by setting an initial virtual state which makes the initial sliding function equal to zero.

  • PDF

세포주기조절에 관한 최근 연구 (Significance of Cell Cycle and Checkpoint Cnotrol)

  • 최영현;최혜정
    • 생명과학회지
    • /
    • 제11권4호
    • /
    • pp.362-370
    • /
    • 2001
  • Regulation of cell proliferation is a complex process involving the regulated expression and /or modification of discrete gene products. which control transition between different stages of the cycle. The purpose of this short review is to provide an overview of somatic cell cycle events and their controls. Cycline have appeared as major positive regulators in this network, because their association to the cyclin-dependent kinases(Cdks) allows the subsequent activation on the Cdk/cyclin complexes and their catalatic activity. In mammalian cells, early to mid G1 progression and late G1 progression leading to S phase entry are directed by D-type cyclins-Cdk4, 6 and cyclin E-Cdk 2 both of which can phosphorylate the retinoblastoma protein (pRB). pRB is a transcriptional repressor which, in its unphosphorylated state, binds to members of the E2F transcription factor family and blocks E2F-dependent transcription of genes controlling the G1 to S phase transition an subsequent DNA synthesis. Cyclin A is produced in late G1 and expressed during S and G2 phae, and expression of B-type cyclins is typically maximal during the G2 to M phase transition and it controls the passage through M phase. They primarily associate with the activate Cdk2, and Cdc2, respectively. On the other hand, the Cdk inhibitors negatively control the activity of C아/cyclin complex by coordinating internal and/or external signals and impending proliferation at several key checkpoints. These current and further findings will provide novel approaches to understanding and treating major diseases.

  • PDF

Three-Phase Three-Switch Buck-Type Rectifier Based on Current Source Converter for 5MW PMSG Wind Turbine Systems

  • Chae, Beomseok;Suh, Yongsug;Kang, Tahyun
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1501-1512
    • /
    • 2018
  • This paper proposes a three-phase three-switch buck-type converter as the MSC of a wind turbine system. Owing to a novel switching modulation scheme that can eliminate the unwanted diode rectifier mode switching state, the proposed system exhibits a satisfying ac voltage and current waveform quality and torque ripple up to the level of a typical current source rectifier even under a wide power factor operating range. The proposed system has been verified through simulations and HILS tests on a PMSG wind turbine model of 5MW/4160V. The proposed converter has been shown to provide a stator current THD of 3.9% and a torque ripple of 1% under the rated power condition. In addition to the inherent advantage of the reduced switch count of three-phase three-switch buck-type converters, the proposed switching modulation technique can make this converter a viable solution for the MSC placed inside of a nacelle, which is under severe volume, weight and mechanical vibration design limits.

마이크로프로세서를 이용한 3상 브리지 콘버터의 제어회로 설계에 관한 연구 (A Study on the Design of a Control Circuit for Three- Phase Full Bridge Converter Using Microprocessor)

  • 노창주;김윤식;김영길;유진열;류승각
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권4호
    • /
    • pp.102-112
    • /
    • 1992
  • The three-phase full(6-pulse) bridge controlled rectifier is one of the most widely used types of solid-state converters in DC drive applications for higher performance. In most of the previous designs, the gate control circuits of the converter have been designed with analog method which can be easily affected by noise. Nowdays with advances of microelectronics and power electronics, microprocessor and pheripal LSIs are increasingly used for eliminating this problems. In this paper, a novel general-purpose microprocessor -based firing system and control scheme for a three-phase controlled rectifier bridge has been developed and tested. Using the phase relations between ${\Delta}$-Y transformer in power operation part, gate pulse of the converter is generated with real time process so that microprocessor may share its time to control algorithms efficiently. The firing angle of the converter is smoothly controlled in the range of 0 $^{\dirc}$ to 180$^{\dirc}$ with a fast respone and a constant open loop gain, even for the case where the converter is fed by a weak AC system of unregulated frequency. The hardware and software control circuit implementation built around a 80286 microprocessor is discussed, and the experimental results are given. This scheme uses less hardware components and has higher dynamic performance in variable speed DC drive applications.

  • PDF

A Novel Control Algorithm of a Three-phase Four-wire PV Inverter with Imbalance Load Compensation Function

  • Le, Dinh-Vuong;Kim, Chang-Soon;Go, Byeong-Soo;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1131-1137
    • /
    • 2018
  • In this paper, the authors suggest a new control algorithm for a three-phase four-wire photovoltaic (PV) inverter with imbalance load compensation function using conventional proportional-integral (PI) controllers. The maximum power of PV panel is calculated by the MPPT control loop. The reference varying signals of current controllers are transformed to two different rotating frames where they become constant signals. Then simple PI controllers are applied to achieve zero steady-state error of the controllers. The proposed control algorithm are modeled and simulated with imbalance load configuration to verify its performance. The simulation results show that the maximum PV power is transferred to the grid and the imbalance power is compensated successfully by the proposed control algorithm. The inverter has a fast response (~4 cycles) during the transient period. The proposed control algorithm can be effectively utilized to the three-phase four-wire inverter with imbalance load compensation function.

A Novel Route to Realise High Degree of Graphitization in Carbon-carbon Composites Derived from Hard Carbons

  • Mathur, R.B.;Bahl, O.P.;Dhami, T.L.;Chauhan, S.K.
    • Carbon letters
    • /
    • 제4권3호
    • /
    • pp.111-116
    • /
    • 2003
  • Carbon/carbon composites were developed using PAN based carbon fibres and phenolic resin as matrix in different volume fractions and heat treated to temperatures between $1000^{\circ}C$ to $2500^{\circ}C$. Although both the starting precursors are nongraphitizing hard carbons individually, their composites lead to very interesting properties e.g. x-ray diffractograms show the development of graphitic phase for composites having fibre volume fractions of 30~40%. Consequently the electrical resistivity of such composites reaches a value of $0.8\;m{\Omega}cm$, very close to highly graphitic material. However, it was found that by increasing the fibre volume fraction to 50~60%, the trend is reversed. Optical microscopy of the composites also reveals the development of strong columnar type microstructure at the fibre (matrix interface due to stress graphitization of the matrix. The study forcasts a unique possibility of producing high thermal conductivity carbon/carbon composites starting with carbon fibres in the chopped form only.

  • PDF

Synthesis and Characterization of Sulfonated Poly(arylene ether) Polyimide Multiblock Copolymers for Proton Exchange Membranes

  • Lee, Hae-Seung;Roy Abhishek;Badami Anand S.;McGrath James E.
    • Macromolecular Research
    • /
    • 제15권2호
    • /
    • pp.160-166
    • /
    • 2007
  • Novel multiblock copolymers, based on segmented sulfonated hydrophilic-hydrophobic blocks, were synthesized and investigated for their application as proton exchange membranes. A series of segmented sulfonated poly(arylene ether sulfone)-b-polyimide multiblock copolymers, with various block lengths, were synthesized via the coupling reaction between the terminal amine moieties on the hydrophilic blocks and naphthalene anhydride functionalized hydrophobic blocks. Successful imidization reactions required a mixed solvent system, comprised of NMP and m-cresol, in the presence of catalysts. Proton conductivity measurements revealed that the proton conductivity improved with increasing hydrophilic and hydrophobic block lengths. The morphological structure of the multiblock copolymers was investigated using tapping mode atomic force microscopy (TM-AFM). The AFM images of the copolymers demonstrated well-defined nanophase separated morphologies, with the changes in the block length having a pronounced effect on the phase separated morphologies of the system. The self diffusion coefficient of water, as measured by $^1H$ NMR, provided a better understanding of the transport process. Thus, the block copolymers showed higher values than Nafion, and comparable proton conductivities in liquid water, as well as under partially hydrated conditions at $80^{\circ}C$. The new materials are strong candidates for use in PEM systems.

하지근력증강로봇 제어를 위한 착용자의 보행단계구분 (Human Gait-Phase Classification to Control a Lower Extremity Exoskeleton Robot)

  • 김희영
    • 한국통신학회논문지
    • /
    • 제39B권7호
    • /
    • pp.479-490
    • /
    • 2014
  • 하지근력증강로봇은 인간의 하체에 착용하여 보행능력을 강화하거나 보조하기 위한 장비다. 보행능력을 향상하기 위해 로봇은 착용자의 걷는 움직임을 감지하고 이에 적합한 로봇의 동작을 구동한다. 본 논문에서는 로봇이 착용자의 움직임을 감지하는 방법을 소개하고, 감지된 데이터를 착용자의 현재 보행단계를 의미하는 보행단계상태 정보로 변환하는 보행단계구분 알고리즘을 제시한다. 로봇은 보행단계상태 정보에 따라 현재 필요한 제어모드를 결정하고 로봇구동기를 작동하기 때문에 잘못된 정보가 전달된다면 로봇은 착용자의 보행능력을 향상할 수 없거나 착용자에게 오히려 불편을 줄 수 있다. 따라서 보행단계구분 알고리즘은 항상 정확한 정보를 제공할 수 있어야 한다. 하지만 본 연구에서 사용하는 센서장치의 경우 작은 움직임에도 민감하게 반응하는 특성이 있어 센서데이터를 임계기준으로 구분하는 방법으로는 항상 정확한 보행단계상태 정보를 구할 수 없다. 이러한 특성을 극복하면서 정확한 정보를 제공하기 위해 확률적 구분 방법을 응용한 나이브-플렉시블 베이지안 보행단계구분 알고리즘을 제안하였고, 실험을 통해 제안 방법의 정확성을 비교 분석하였다.

이차 선형 시불변 비최소 위상 시스템의 설정값 조정을 위한 새로운 슬라이딩 모드 제어 (A New Sliding Mode Control for Set-point Regulation of Second Order LTI Nonminimum Phase Systems)

  • 이하준;박철훈
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.990-999
    • /
    • 2007
  • We deal with second order NMP(Non-Minimum Phase) systems which are difficult to control with conventional methods because of their inherent characteristics of undershoot. In such systems, reducing the undesirable undershoot phenomenon makes the response time of the systems much longer. Moreover, it is impossible to control the magnitude of undershoot in a direct way and to predict the response time. In this paper, we propose a novel two sliding mode control scheme which is capable of determining the magnitude of undershoot and thus the response time of NMP systems a priori. To do this, we introduce two sliding lines which are in charge of control in turn. One is used to stabilize the system and achieve asymptotic regulation eventually like the conventional sliding mode methods and the other to stably control the magnitude of undershoot from the beginning of control until the state meets the first sliding line. This control scheme will be proved to have an asymptotic regulation property. The computer simulation shows that the proposed control scheme is very effective and suitable for controlling the second order NMP system because it can decide the magnitude of undershoot in a direct and stable way and reduce the response time compared with the conventional ones.

A Hybrid CBPWM Scheme for Single-Phase Three-Level Converters

  • Wang, Shunliang;Song, Wensheng;Feng, Xiaoyun;Ding, Rongjun
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.480-489
    • /
    • 2016
  • A novel hybrid carrier-based pulse width modulation (CBPWM) scheme that combines unipolar and dipolar modulations is proposed for single-phase three-level rectifiers, which are widely applied in railway traction drive systems. The proposed CBPWM method can satisfy the volt-second balancing principle in the complete modulation index region through overmodulation compensation. The modulation scheme features two modulation modes: unipolar and dipolar. The operation range limits of these modulation modes can be modified by changing the separation coefficient. In comparison with the traditional unipolar CBPWM, the proposed hybrid CBPWM scheme can provide advantageous features, such as lower high-order harmonic distortion of the line current and better utilization of switching frequency. The separation coefficient value is optimized to achieve the maximum utilization of these advantages. The experimental results verify the feasibility and effectiveness of the proposed hybrid CBPWM scheme.