• Title/Summary/Keyword: Notched steel specimen

Search Result 32, Processing Time 0.016 seconds

Effets of Steel Fiber Contents on Flexural Creep Behavior of High-Strength Concrete (강섬유 혼입률에 따른 고강도 콘크리트의 휨 크리프 특성)

  • Lim, Seong-Hoon;Kim, Dong-Hwi;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • In this paper, the flexural creep behavior of hooked-end steel fiber reinforced high-strength concrete was evaluated to investigate the steel fiber content influence on long-term behavior of flexural members. An experimental program consisted of nine prismatic beam specimens with dimensions of 150 × 150 × 600mm reinforced with different contents of steel fiber (0, 0.75 and 1.5% at the volume fraction). To introduce flexural creep loading to notched prismatic beam specimens, a four-point bending test setup was used. The sustained load with 40% of the flexural strength was applied by means of a lever system and controlled by a load cell for 90 days. During sustained loading, crack mouth opening displacement (CMOD) was monitored. Conventional flexural test after creep tests were carried out to evaluate the residual capacity of each specimen. Test results showed that steel fiber content has a significant effect on the flexural creep behavior of high-strength concrete and long-term flexural load with 40% of flexural strength doesn't generate negative effects on the residual capacity of steel fiber reinforced high-strength concrete.

FRACTURE TOUGHNESS OF SELF-CURING DENTURE BASE RESINS WITH DIFFERENT POLYMERIZING CONDITIONS (의치상용 자가중합레진의 중합조건에 따른 파괴인성)

  • Jeong Soo-Yang;Kim Ji-Hye;Yang Byung-Deok;Park Ju-Mi;Song Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.1
    • /
    • pp.52-60
    • /
    • 2005
  • Purpose. The intent of this study was to evaluate the effects of curing conditions on self-curing denture base resins to find out proper condition in self-curing resin polymerization. Materials and methods, In this study, 3 commercial self-curing denture base resins are used Vertex SC, Tokuso Rebase and Jet Denture Repair Acrylic. After mixing the self curing resin, it was placed in a stainless steel mold(3$\times$6$\times$60mm). The mold containing the resin was placed under the following conditions: in air at 23$^{\circ}C$; or in water at 23$^{\circ}C$; or in water at 23$^{\circ}C$ under pressure(20psi); or in water at 37$^{\circ}C$ under pressure(20psi) or in water at 50$^{\circ}C$ under pressure(20psi) , or in water at 65$^{\circ}C$ under pressure(20psi), respectively. Also heat-curing denture base resin is polymerized according to manufactures' instructions as control. Fracture toughness was measured by a single edge notched beam(SENB) method. Notch about 3mm deep was carved at the center of the long axis of the specimen using a dental diamond disk driven by a dental micro engine. The flexural test was carried out at a crosshead speed 0.5mm/min and fracture surface were observed under measuring microscope. Results and conclusion . The results obtained were summarized as follows : 1. The fracture toughness value of self-curing denture base resins were relatively lower than that of heat-curing denture base resin. 2. In Vertex SC and Jet Denture Repair Acrylic, higher fracture toughness value was observed in the curing environment with pressure but in Tokuso Rebase, low fracture toughness value was observed but there was no statistical difference. 3. Higher fracture toughness value was observed in the curing environment with water than air but there was no statistical difference. 4. Raising the temperature in water showed the increase of fracture toughness.