• Title/Summary/Keyword: Notch stress analysis

Search Result 134, Processing Time 0.031 seconds

Fatigue Strength Estimation of the Fillet Weldments with Different Beveling Angle and Porosity (베벨각도와 미세기공에 따른 필렛 용접부의 피로강도평가에 관한 연구)

  • Hong, Chun-Hyi;Oh, Se-Jong;Lee, Won-Seok;Lee, Hyun-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1439-1446
    • /
    • 2006
  • The fatigue test of the fillet weldments was executed with different beveling angles and porosities. The beveling angles of $0^{\circ}$, $45^{\circ}$ and $55^{\circ}$ were compared with fatigue lives. After the fillet weldment failure, the porosities which found at the fractured surface were observed to account the effect on fatigue life. Finite element analysis was performed to correlate the fatigue strength and the sizes and the locations of porosities. The stress-strain field was severely affected by the length of notch and the sizes and locations of porosities. Based on the quantitative analysis of porosity effect, the total volume of porosities was a key factor for fatigue strength of the fillet weldment.

Effect of Fatigue Strength in Fillet Weldments with Different Groove Angle and Porosity (필렛 용접 시 그루브 각도와 미세기공에 따른 피로강도의 영향)

  • Koo, Bon-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.9-16
    • /
    • 2007
  • The fatigue test of the fillet weldments were executed with different groove angles and porosity. The groove angles of $90^{\circ}$, $45^{\circ}$ and $55^{\circ}$ were compared with fatigue lives. After the fillet weldment failure, the porosity which found at the fractured surface were observed to account the effect on fatigue life. Finite element analysis were performed to correlate the fatigue strength and the size & the location of porosity. The stress-strain field were severely affected by the length of notch and the size & location of porosity. Based on the quantitative analysis of porosity effect, the total volume of porosity was key factor for fatigue strength of the fillet weldment.

  • PDF

Two-dimensional Elastic Analysis of Doubly Periodic Circular Holes in Infinite Plane

  • Lee, Kang-Yong;Chen, Yi-Zhou
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.655-665
    • /
    • 2002
  • Two-dimensional elastic analysis of doubly periodic circular holes in an infinite plane is given in this paper. Two cases of loading, remote tension and remote shear, are considered. A rectangular cell is cut from the infinite plane. In both cases, the boundary value problem can be reduced to a complex mixed one. It is found that the eigenfunction expansion variational method is efficient to solve the problem. Based on the deformation response under certain loading, the notched medium could be modeled by an orthotropic medium without holes. Elastic properties for the equivalent orthotropic medium are investigated, and the stress concentration along the hole contour is studied. Finally, numerical examples and results are given.

The Effect of Fretting Wear on Fatigue Life of Press-fitted Shaft (압입축에 발생하는 프레팅 마모가 피로수명에 미치는 영향)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1083-1092
    • /
    • 2007
  • The objective of the present paper is to evaluate the effect of the evolution of contact surface profile caused by fretting wear on fatigue life of press-fitted shaft by means of an analytical method based on experimental data. A finite element analysis was performed to analyze the stress states of press-fitted shaft, considering the worn contact profiles of shaft. The fatigue lives of the press-fitted shaft reflecting the evolution of contact stress induced by fretting wear were evaluated by stress-life approach using fatigue notch factor. It is found that the stress concentration of contact edge in press-fitted shaft decreases rapidly at the initial stage of total fatigue life, and its location shifts from the contact edge to the inside with increasing number of fatigue cycles. Thus the change of crack nucleation position in press-fitted shaft is mainly caused by the stress change of contact edge due to the evolution of contact surface profile by fretting wear. Furthermore, the estimated fatigue lives by stress-life approach at the end of running-in period of the fretting wear process corresponded well to the experimental results. It is thus suggested that the effect of fretting wear on fatigue life in press fits is strongly related to the evolution of surface profile at the initial stage of total fatigue life.

A Study on Structural Safety of CFRP Plate with Notch Hole at Center Part under Torsion (비틀림을 받는 중앙부에 노치홀을 가진 CFRP 판의 구조 안전성에 관한 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.925-932
    • /
    • 2017
  • In this study, the analysis of plate under torsion was carried out according to stacking angle at the unidirectional carbon fiber reinforced plastic(UD CFRP) among composite materials. In case of UD CFRP, the material property due to stacking angle becomes different. Also, the stacking angles were designated to 15°, 30°, 45°, 60°, 75° and 90° at the study models. The notch hole was applied at the center part by supposing that rivet or hole was used. The analysis method was used by applying the experimental method at ISO 15310. Two jigs were fixed at the lower part and two jigs were descending at the upper part. As seen by the analysis result values at this study, the shear stress happening at the fracture part was seen with the lowest value in case of the stacking angle of 45°. It is known that the case of the stacking angle of 45°has the structural safety and durability higher than those of the other stacking angles when the torsion applies. It is thought that this result can be applied to the data of basis which can be devoted to the durability when the torsion is applied at CFRP plate.

Characteristics of the Progressive Brittle Failure around Circular Opening by Scaled Model Test and Discrete Element Analysis (축소 모형시험과 개별 요소 해석에 의한 원형 공동 주변의 점진적 취성파괴 특성에 관한 연구)

  • Jeon Seok-Won;Park Eui-Seob;Bae Seong-Ho
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.250-263
    • /
    • 2005
  • Progressive and localized brittle failures around an excavated opening by the overstressed condition can act as a serious obstacle to ensure the stability and the economical efficiency of construction work. In this paper, the characteristics of the brittle failure around an circular opening with stress level was studied by the biaxial compressive test using sealed specimen and by the numerical simulation with $PFC^{2D}$, one of the discrete element codes. The occurring pattern and shape of the brittle failure around a circular opening monitored during the biaxial loading were well coincided with those of the stress induced failures around the excavated openings observed in the brittle rock masses. The crack development stages with stress level were evaluated by the detailed analysis on the acoustic emission event properties. The microcrack development process around a circular opening was successfully visualized by the particle flow analysis. It indicated that the scaled test had a good feasibility in understanding the mechanism of the brittle failure around an opening with a high reliability.

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴 특성)

  • Lee, Yun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.58-66
    • /
    • 2002
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By taking various strengths and ages, load-crack mouth opening displacement curves were obtained, and the results were analyzed by linear elastic fracture mechanics and the finite element method. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete ages from 1 day to 28 days. By numerical analysis four parameters of bilinear softening curve from 1 day to 28 days were obtained. The obtained fracture parameters and bilinear softening curves at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

Stress Analysis of Composite Plate with an Elliptical Hole or a Crack Using Complex Potentials (복소퍼텐셜을 이용한 타원공 또는 균열을 가진 복합재 평판 응력해석)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.56-63
    • /
    • 2007
  • An approach using complex potentials is presented for analysis of composite plate with an elliptical hole or a rectilinear crack. Composite structure is susceptible to encounter impact damages, which lead to considerable decrease in its residual strength. Such impact damages could be modeled as an equivalent elliptical hole or notch-like crack. Even though finite element method is widely used to analyze stresses or fracture mechanics parameters around such damage, it is tedious to make successive FE-modeling for damage tolerance assessment under fatigue loadings. In this point of view, the solutions based on complex potentials are very simple and easy to use. The computed results are also compared and discussed with those from FEA.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

A Study on Improving Reliability of Durability Life Estimation for Excavator Fuel Tank Mounting Using Equivalent S-N Curve Method (등가 S-N 선도 모형에서의 굴착기 연료탱크 마운팅부 내구수명 예측 신뢰성 향상 방안 연구)

  • Lee, Sung-Won;Jeong, Jin-Wook;Kim, Seong-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.17-26
    • /
    • 2021
  • It is challenging to estimate the fatigue life of construction equipment consisting of a welded joint using field structure test owing to the uncertainty of the S-N curve. IIW recommends different S-N curves for various welded joint types. However, there is no way to define an appropriate curve considering complex design shape and strain gauge characteristics. This paper proposes an equivalent S-N curve method based on the relationship between IIW effective notch stress and virtual stress using finite element analysis. Moreover, a case study was conducted for the excavator fuel tank. The proposed method is expected to enhance accuracy and consistency in calculating the fatigue life for the welded structure of construction equipment.