• Title/Summary/Keyword: Nosema

Search Result 52, Processing Time 0.03 seconds

Oxidative Stress and Antioxidant Defences in the Tasar Silkworm Antheraea mylitta D: Challenged with Nosema Species

  • Jena, Karmabeer;Pandey, Jay Prakash;Sinha, Ajit Kumar
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.28 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • This study was designed to find out the effect of Nosema spore on oxidative damages and antioxidant defence in the midgut of tasar silkworm Antheraea mylitta. Higher level of lipid peroxidation (LPX) and total hydroperoxides indicate the resultant oxidative stress in the Nosema exposed specimen. Increased superoxide dismutase (SOD) suggests activation of physiological mechanism to scavenge the superoxide radical produced during Nosema infection. Higher activities of catalase and glutathione-S-tranferase on $18^{th}$ d indicate adaptive behaviour of the tissue against oxyradicals. The results suggest that Nosema infection is involved in altering the active oxygen metabolism by modulating LPX and reactive oxygen species (ROS), which is indicative of pebrine disease disorder.

Microsporidian Multiplication and Spore Production in Various Tissues of Pupa and Adult, in Relation to Age and Development of Silkworm, Bombyx mori L.(Lepidoptera: Bombycidae)

  • Nanu, Madana Mohanan;Gupta, Sunil Kumar;Saratchandra, Beera;Haldar, Durga Prasad
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.18 no.2
    • /
    • pp.83-89
    • /
    • 2009
  • Multiplication and spore production of three microsporidia(Nosema bombycis, Nosema sp. 1 and Nosema sp. 2) in selected tissues of pupa and adult of silkworm, Bombyx mori L. were studied in two seasons (SI, SII) with distinct temperature (SI: $20.1{\pm}0.8^{\circ}C$ and SII: $25.1{\pm}0.7^{\circ}C$) regimes. Multiplication of the microsporidia followed a logistic pattern with a lag phase, an exponential phase and a stationary phase. In SII, spore production was significantly (P<0.01) higher in various tissues. Highest spore production was observed 30 days post inoculation (p.i.) in SI and in SII, it was $21{\sim}23$ days p.i. Spore production was significantly (P<0.01) higher in the gut tissues than other tissues. Nosema sp. 2 registered significantly (P<0.01) higher spore production in both the seasons compared to Nosema bombycis and Nosema sp. 1. Results indicate that the multiplication and spore production of microsporidia are tissue specific and extremely sensitive to the temperature at which the host is reared. Through this study, the precise day that the spore numbers of the microsporidia are maximized can be predicted in both pupa and adult in case the infection is initiated in the first instar.

Efficient Method for the Rapid Purification of Nosema ceranae Spores

  • Kim, Dong-Jun;Yun, Hwi-Geon;Kim, In-Hui;Gwak, Won-Seok;Woo, Soo-Dong
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.204-208
    • /
    • 2017
  • Nosema ceranae is an obligate intracellular fungal parasite that causes mortality in honey bees and enhances the susceptibility of honey bees to other pathogens. Efficient purification of Nosema spores from the midgut of infected honey bees is very important because Nosema is non-culturable and only seasonably available. To achieve a higher yield of spores from honey bees, in this study, we considered that the initial release of spores from the midgut tissues was the most critical step. The use of 2 mm beads along with enzymatic treatment with collagenase and trypsin enhanced the homogenization of tissues and the yield of released spores by approximately 2.95 times compared with the use of common 3 mm beads alone. The optimal time for the enzyme treatment was determined to be 1 hr as measured by the yield and viability of the spores. A one-step filtration using a filter paper with an $8-11{\mu}m$ pore size was sufficient for removing cell debris. This method may be useful to purify not only N. ceranae spores but also other Nosema spp. spores.

Studies on Nosema Disease of Honey Bees 1. Isolation of Nosema apis and a Survey of Nosema Disease in Honey Bees (꿀벌의 Nosema 병(病)에 관한 연구(硏究) 1. 원인체분리(原因體分離) 및 감염실태조사(感染實態調査))

  • Suh, Myung Deuk;Kim, Chang Sup;Kang, Yung Bai;Kim, Dong Sung
    • Korean Journal of Veterinary Research
    • /
    • v.15 no.2
    • /
    • pp.279-285
    • /
    • 1975
  • The experiments were conducted to isolate the etiogical agent and to survey the distribution of Nosema disease in honey bees. The results obtained were as follows: 1. The etiological agent of the so-called "crawling disease" in honey bees characterized by the symptoms of crawling, diarrhea, and enteritis etc. was first isolated and identified with Nosema apis (Zander 1909) in Korea. 2. 455 colonies were randomely sampled and surveyed in 4,766 bee colonies out of 56 apiaries and 51 colonies (11.2%) out of 455 bee colonies were infected with N, apis. 3. Infection rates according to the period of honeyflow as follows: Brassica napus (Apr.): 25/130 colonies (18.4%) Rohinia pseudoacacia (May) : 8/55 colonies (14.%) Trifolium repels(Jun.): 15/99 colonies (13.6%) Castanea crenate (Jul.): 3/46 colonies (6.5%) Lespedeza bicolor(Aug.): 0/60 colonies (-) Fagopyrumesculentum(Sept.) & Perilla frutescens(Oct.) 0/65 colonies (-) 4. The typical clinical signs of Nosema disease were appeared on loth day after N. apis was orally administered with the level of $16{\times}10^4$ spores/ml to the healthy adult bees. Spores could be harvested with the level of $121{\sim}236{\times}10^4$ spores/ml on 10th day and $392{\sim}429{\times}10^4$ spores/ml on 15 days after infection. 5. In adult honey bees infected with N. apis artificially the 50% lethal day of life-span was 9 to 10 days and 100% lethal day was 16 to 19 days. However, in the control 50% lethal day was 19 to 23 days and 100% lethal day was 31 to 33 days.

  • PDF

Anti-nosemosis Activity of Artemisia dubia and Aster scaber

  • Dae Yoon Kim;Hui Jin Park;Jae Kwon Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.6-6
    • /
    • 2023
  • Nosemosis is one of the most common protozoan diseases of adult bees (Apis mellifera). Nosemosis is caused by two species of microsporidia; Nosema apis and Nosema ceranae. Nosema ceranae is potentially more dangerous because it has the ability to infect multiple cell types, and it is now the predominant microsporidian species in A. mellifera. In this study, we identified two anti-nosemosis plants, Aster scaber and Artemisia dubia, which reduced the spore development of N. ceranae in spore-infected cells. We intend to establish the anti-nosemosis activity of aqueous, ethyl acetate (EA), and butanol (BuOH) extracts of A. dubia and A. scaber. In order to determine the optimal dose, we did in vitro and in vivo toxicity for all the extracts and carried out anti-nosemosis experiments. Although all of the extracts (aqueous, EA, and BuOH) showed in vitro and in vivo anti-nosemosis activity in a dose-dependent manner, the aqueous extracts of A. dubia and A. scaber showed more potent anti-nosemosis activity than the EA and BuOH extracts. And then, we isolated five phenolic compounds [chlorogenic acid, 3,4-dicaffaeoylquinic acid (3,4-DCQA), 3,5-dicaffaeoylquinic acid (3,5-DCQA), 4,5-dicaffaeoylquinic acid (4,5-DCQA), and coumarin] from A. dubia, A. scaber, and A. dubia + A. scaber aqueous extracts and screened for their toxicities and anti-Nosema effects in both in vivo and in vitro conditions. Among these five compounds, coumarin, chlorogenic acid, and 4,5-DCQA exhibited less toxic but more potent anti-Nosema effects than the other two compounds. Especially, chlorogenic acid and coumarin showed prominent anti-Nosema activities even at the lowest concentration (10 ㎍/mL). They might have potential to be developed as alternative compounds for the control of Nosema disease.

  • PDF

Seasonal Impact of Microsporidian Infection on the Reproductive Potential of Silkworm, Bombyx mori L. (Lepidoptera: Bombycidae)

  • Mohanan N. Madana;Krishnan N.;Mitra P.;Das N. K.;Saratchandra B.;Haldar D. P.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.11 no.2
    • /
    • pp.107-111
    • /
    • 2005
  • Impact of microsporidian infection and season on reproductive potential of Bombyx mori L. was investigated in the laboratory. Microsporidian infection significantly (P<0.01) reduced fecundity and hatching and increased sterility and mortality of eggs. Among the microsporidia, Nosema sp. 2 infected silkworm produced eggs with least fecundity and hatching percent as well as highest dead and sterile eggs followed by Nosema sp. 1 and N. bombycis. Microsporidia, in general, significantly reduced fecundity and hatching percent of eggs and increased number of dead and sterile eggs in all the three seasons except N. bombycis in July - August (S3) and Nosema sp. 2 in January February (S1). Since, seed production is the anchor sheet of mulberry sericulture, coefficient of egg lying is considered as an important aspect and the industry quite often facing shortage of disease free layings. The present study indicates that B. mori is more susceptible to microsporidia during S2 followed by S3 and S1 and Nosema sp2. is most virulent followed by Nosema spl. and N. bombycis.

Simultaneous Detection and Differentiation of Vairimorpha spp. and Nosema spp. by Multiplex Polymerase Chain Reaction

  • Choi, Ji-Young;Je, Yeon-Ho;Kim, Jong-Gill;Choi, Young-Cheol;Kim, Won-Tae;Kim, Keun-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.737-744
    • /
    • 2004
  • A multiplex polymerase chain reaction (PCR) was developed for the simultaneous detection and differentiation among Vairimorpha spp. and Nosema spp. and identification of Vairimorpha necatrix from Lepidoptera insects. Three sets of primers were selected from different genomic sequences to specifically amplify an 831 bp amplicon within the SSU rRNA gene, specific for both Vairimorpha spp. and Nosema spp. (MSSR primer); a 542 bp amplicon within the SSU rRNA gene, specific for Vairimorpha spp. (VSSU primer); and a 476 bp amplicon within the actin gene, specific for Vairimorpha necatrix (VNAG primer). Using the primers in conjunction with multiplex PCR, it was possible to detect Vairimorpha spp. and Nosema spp. and to differentiate between them. The sensitivity of this PCR assay was approximately 10 spores per milliliter. It is proposed that the multiplex PCR is a sensitive, specific, and rapid tool that can serve as a useful differential diagnostic tool for detecting Vairimorpha spp. and Nosema spp. in Lepidoptera insect.

Isolation of a New Microsporidian sp. (NIK-5hm) forming Spores within the Haemocytes of Silkworm, B. mori L.

  • Selvakumar T.;Nataraju B.;Chandrasekharan K.;Sharma S. D.;Balavenkatasubbaiah M.;Sudhakara Rao P.;Thiagarajan V.;Dandin S. B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.11 no.1
    • /
    • pp.63-69
    • /
    • 2005
  • While observing silkworm larval samples received from field, microsporidian spores formed within the haemocytes of silkworm haemolymph were observed. The spores of microsporidian sp. were purified and characterized for morphological characters viz., size, shape as well as serological affinity with different Nosema spp. (M$_{11}$ and M$_{12}$). The infectivity of the isolated spores to silkworm was also studied. The microsporidian sp. was found to be highly pathogenic to silkworm, B. mori. The isolated microsporidian sp. was designated as NIK-5hm, which formed ovocylindrical spore in the haemocytes of silkworm and differed in spore size (length, 4.55 $\mu$m & width, 2.10 $\mu$m) and shape from Nosema bombycis (NIK-ls), NIK-2r (Nosema sp. Mysore [3.6 & 2.8 $\mu$m]), NIK-3h (Nosema sp. M$_{11}$ [3.8 & 1.8 $\mu$m]), NIK-4m (Nosema sp. M$_{12}$ [5.0 & 2.1 $\mu$m]) and Lb$_{ms}$ (Nosema sp. in Lamerine breed of silkworm [4.36 & 2.14]). In immonological test (Latex agglutination test), the isolated microsporidian spores did not react with antibody sensitized latex particles of N. bombycis, M$_{11}$, M$_{12}$ and Lb$_{ms}$ and thus are different type of microsporidian sp., parasitic to silkworm, Bombyx mori L.

Identification, Characterization, and DNA Sequencing of Nosema bombi in Bumblebees from Gangwon Province, Korea

  • Kwak, Kyu-Won;Yoon, Hyung-Joo;Choi, Youngcheol;Park, Kwanho;Hwang, Jaesam;Kim, Hyunae;Nam, Sunghee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.219-227
    • /
    • 2013
  • The purpose of this study was to quickly and effectively identify the Nosema disease of bumblebees in Gangwon Province in Korea. Bumblebees are crucial pollinators of various crops, and microsporidia are the critical pathogens of these hosts. When bumblebees are infected with Nosema bombi, their abdomens can become distended. Paralyzed and infected workers often become sluggish and die early. We have identified the morphology of the microsporidium by light and electron microscopy, and found it to have fairly small oval spores, as has been described previously in many other articles. For the specific and sensitive diagnosis of the microsporidian parasite N. bombi in bumblebees, we have developed an improved method of the polymerase chain reaction (PCR) for expeditious diagnosis. Two pairs of primers were tested on N. bombi and the related microsporidia Nosema apis and Nosema sp., both of which infect Bombus ignitus and Bombus hypocrita sapporoensis. Furthermore, we have verified and analyzed the 16SrRNA sequence data of N. bombi in bumblebees by using the Basic Local Alignment Search Tool (BLAST) server at the National Center for Biotechnology Information.

Prevalence of Nosema and Virus in Honey Bee (Apis mellifera L.) Colonies on Flowering Period of Acacia in Korea

  • Hong, In-Pyo;Woo, Soon-Ok;Choi, Yong-Soo;Han, Sang-Mi;Kim, Nam-Suk;Kim, Hye-Kyung;Han, Sang-Hoon;Lee, Man-Young;Lee, Myeong-Lyeol;Byeon, Kyu-Ho
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.317-320
    • /
    • 2011
  • Honey production from approximately 1.6 million colonies owned by about 199,000 Korean beekeepers was almost 23,000 metric tons in 2009. Nosema causes significant losses in honey production and the virus decreases population size. We initiated a survey of honey bee colonies on the blooming period of Acacia to determine the prevalence of Nosema and virus in 2011. Most Korean beekeepers have moved from the south to north of Korea to get Acacia nectar for 2 mon. This provided a valuable opportunity to sample bees originating from diverse areas in one location. Twenty hives owned by 18 beekeepers were sampled in this year. Nosema spore counts ranged from zero to 1,710,000 spores per bee. The average number of nosema spores per bee was 580,000. Approximately 95% of the colonies were infected with Nosema, based on the presence of spores in the flowering period of Acacia. This indicates that Nosema is the predominant species affecting honeybee colonies. Also, the seven most important honeybee viruses were investigated by reverse transcription-PCR. Among them, four different viruses were detected in samples. Black queen cell virus was present in all samples. Chronic bee paralysis virus was detected in 10% of samples. Deformed wing virus was present in only 5% of the samples. Prevalence of Sacbrood virus was 15%. However, Cloudy wing virus, Israel acute paralysis virus and kashmir bee virus were not detected in any of samples.