Seasonal Impact of Microsporidian Infection on the Reproductive Potential of Silkworm, Bombyx mori L. (Lepidoptera: Bombycidae)

  • Mohanan N. Madana (Central Sericultural Research and Training Institute, Central Silk Board) ;
  • Krishnan N. (Department of Physiology, Institute of Entomology, Czech Academy of Sciences) ;
  • Mitra P. (Central Sericultural Research and Training Institute, Central Silk Board) ;
  • Das N. K. (Central Sericultural Research and Training Institute, Central Silk Board) ;
  • Saratchandra B. (Central Silk Board, BTM Layout) ;
  • Haldar D. P. (Protozoology Laboratory Department of Zoology, University of Kalyani)
  • Published : 2005.12.01

Abstract

Impact of microsporidian infection and season on reproductive potential of Bombyx mori L. was investigated in the laboratory. Microsporidian infection significantly (P<0.01) reduced fecundity and hatching and increased sterility and mortality of eggs. Among the microsporidia, Nosema sp. 2 infected silkworm produced eggs with least fecundity and hatching percent as well as highest dead and sterile eggs followed by Nosema sp. 1 and N. bombycis. Microsporidia, in general, significantly reduced fecundity and hatching percent of eggs and increased number of dead and sterile eggs in all the three seasons except N. bombycis in July - August (S3) and Nosema sp. 2 in January February (S1). Since, seed production is the anchor sheet of mulberry sericulture, coefficient of egg lying is considered as an important aspect and the industry quite often facing shortage of disease free layings. The present study indicates that B. mori is more susceptible to microsporidia during S2 followed by S3 and S1 and Nosema sp2. is most virulent followed by Nosema spl. and N. bombycis.

Keywords

References

  1. Andreadis, G. T. and W. D. Hall (1979) Significance oftransovarial infections of Amblyospora sp. (Microspora: Thelohaniidae) in relation to parasite maintenance in the mosquito Culex salinarius. J. Invertebr. Pathol. 34, 152-157 https://doi.org/10.1016/0022-2011(79)90095-8
  2. Bansal, A. K., N. N. Saxena, R. M. Shukla, D. K. Roy, B. R. R. P. Sinha and S. S. Sinha (1997) A new technique proposed for estimation of pebrine in grainage. Sericologia 37, 11-14
  3. Bauer, S. L. and L. G. Nordin (1988b) Pathogenicity of Nosema fumiferanae (Thomson) (Microsporida) in spruce budworm, Choristoneura fumiferana (Clemns) and implications of diapause conditions. Can. Entomol. 120, 221-229 https://doi.org/10.4039/Ent120221-3
  4. Bauer, S. L. and L. G. Nordin (1989) Effect of Nosemafumiferanae (Microsporida) on fecundity, fertility and progeny performance of Choristoneura fumiferana (Lepidoptera: Tortricidae). Environ. Entomol. 18, 261-265 https://doi.org/10.1093/ee/18.2.261
  5. Bradley, J. T. (1983) Physiology of insect vitellogenesis: I. Protein uptake and synthesis by the ovary (a review). J. Alab. Acad. Sci. 54, 33-47
  6. Engelmann, F. (1970) The Physiology of Insect Reproduction. Pergamon Press, Oxford
  7. Gaugler, R. R. and W. M. Brooks (1975) Sublethal effects of infection by Nosema heliothidis in the com earworm, Heliothis zea. J. Invertebr. Pathol. 26, 57-63 https://doi.org/10.1016/0022-2011(75)90169-X
  8. Gordon, R., J. M. Webster and T. G. Hislop (1973) Mermithid parasitism, protein turnover and vitelogenesis in the desert locust Schistocerca gregaria. Comp. Biochem. Physiol. 46, 575-593 https://doi.org/10.1016/0305-0491(73)90098-9
  9. Hassanein, M. H. (1951) Studies on the effect of infection with Nosema apis on the physiology of the queen honey bee. Q. J. Microsc. Sci. 92, 225
  10. Madana Mohanan, N., N. Krishnan, P. Mitra, B. Saratchandra and D. P. Haldar (2004) Developmental cycle of a new microsporidian isolated from Diacrisia oblique (Walker) and its cross-infection to mulberry silkworm, Bombyx mori L. (Lepidoptera: Bombycidae); in Recent Advances in Animal Research, Vol. III. Ghosal, S. K. and D. Ray (eds.), pp. 356-368, Orion Press International, West Bengal, India
  11. Madana Mohanan, N. (2004) Microsporidian parasites of mulberry pests and their cross-infection to silkworm, Bombyx mori L. Ph. D. Thesis, University of Kalyani, India
  12. Malone, L. A. (1987) Longevity and fecundity of Argentine stem weevils, Listronotus bonariensis (Coleoptera: Curculionidae), infected with Microsporidium itiiti (Protozoa: Microspora). J. Invertebr. Pathol. 50, 113-117 https://doi.org/10.1016/0022-2011(87)90110-8
  13. Malone, L. A. and P. J. Wigley (1981) The morphology and development of Nosema carpocapsae, a microsporidian pathogen of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae) in New Zealand. J. Invertebr. Pathol. 38,315-329 https://doi.org/10.1016/0022-2011(81)90097-5
  14. Mathur, S. K., D. R. Pramanik, S. K. Sen and G. Subba Rao (1995) Effect of seasonal temperature and humidity on ovulation, fecundity and retention of eggs in silkmoth, Bombyx mori (L.) (Lepidoptera: Bombycidae). Rec. Zool. Surv. India 95,57-64
  15. Mercer, C. F. and P. J. Wigley (1987) A microsporidian pathogen of the Poropora stem borer, Sceliodes cordialis (Dbld) (Lepidoptera: Pyralidae). III. Effects on adult reproductive success. J. Invertebr. Pathol. 49, 108-115 https://doi.org/10.1016/0022-2011(87)90132-7
  16. Rath, S. S., N. G. Ojha and B. M. K. Singh (2001) Effect of pebrine infection on fecundity and egg retention in silkworm, Antheraea mylitta D. in different seasons. Indian J. Seric. 40, 7-14
  17. Rath, S. S., B. C. Prasad and B. R. R. P. Sinha (2003) Food utilization efficiency in fifth instar larvae of Antheraea mylitta (Lepidoptera: Satumiidae) infected with Nosema sp. and its effect on reproductive potential and silk production. J. Invertebr. Pathol. 83, 1-9 https://doi.org/10.1016/S0022-2011(03)00038-7
  18. Sato, R. and H. Watanabe (1980) Purification of mature microsporidian spores by iso-density equilibrium centrifugation. J. Seric. Sci. Jpn 49,512-516
  19. Smimoff, W. A. and W. H. Chu (1968) Microsporidian infection and the reproductive capacity of the larch sawfly, Pristiphora erichsonii. J. Invertebr. Pathol. 12, 388-390 https://doi.org/10.1016/0022-2011(68)90343-1
  20. Splittstoesser, C. M. and F. L. McEwen (1968) A microsporidian, Thelohania sp., pathogenic for the cabbage looper, Trichoplusiani. J. Invertebr. Pathol. 12,23 1-237 https://doi.org/10.1016/0022-2011(68)90180-8
  21. Steinhaus, E. A. and K. M. Hughes (1949) Two newly described species of microsporidia from the potato tuber worm, Gnorimoschema operculella (Zeller) (Lepidoptera, Celechiidae). J. Parasitol. 35,67-75 https://doi.org/10.2307/3273388
  22. Syme, P. D. and G W. Green (1972) The effect of Orgilus obscurator (Hymenoptera: Braconidae) on the development of the European pine shoot moth (Lepidoptera: Olethreutidae). Can. Entomol. 104,523-530 https://doi.org/10.4039/Ent104523-4
  23. Tanabe, A. M. and M. Tamashiro (1967) The biology and pathology of a microsporidian (Nosema trichoplusia sp.) of the cabbage looper, Trichoplusiani (Hubner) (Lepidoptera: Noctuiidae). J. Invertebr. Pathol. 9, 188-195 https://doi.org/10.1016/0022-2011(67)90007-9
  24. Thomson, H. M. (1958) The effect of a microsporidian parasite on the development, reproduction and mortality of the spruce budworm, Choristoneurafumiferana (Clem.). Can. J. Zool. 36, 499-511 https://doi.org/10.1139/z58-045
  25. Veber. J. and J. Jasic (1961) Microsporidia as a factor reducing the fecundity in insects. J. Invertebr. Pathol. 3, 103-111
  26. Wilson, G. G. (1983) A dosing technique and the effects of sublethal doses of Nosema fumiferanae (Microsporida) on its host the spruce budworm, Choristoneura fumiferana. Parasitology 87, 371-376 https://doi.org/10.1017/S0031182000082895
  27. Yup-Iian, L. (1995) Silkworm Diseases (translated by Liu Fuan). Oxford and IBH Publishing Company Private Limited, New Delhi, India