• Title/Summary/Keyword: Nos2

Search Result 1,863, Processing Time 0.032 seconds

Magnesium-induced Relaxation in Rat Aorta (Magnesium에 의한 흰쥐 대동맥 이완)

  • Oh, Sung-suck;Lee, Sang-woo;Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.373-382
    • /
    • 2003
  • Magnesium ion ($Mg^{2+}$) is a vasodilator, but little is known about its mechanism of action on vascular system. In vitro, extracellular magnesium sulfate ($MgSO_4$) produced relaxation in phenylephrine (PE) or high KCl-precontracted isolated rat thorocic aorta with (+E) or without (-E) endothelium in a concentration-dependent manner. The $MgSO_4$-induced relaxations were not affected by removal of the endothelium. Pretreatment of +E or -E aortic rings with nitric oxide synthase (NOS) inhibitors ($20{\mu}M$ L-NNA, $100{\mu}M$ L-NAME, $1{\mu}M$ dexamethasone and $400{\mu}M$ aminoguanidine), cyclooxygenase inhibitor ($10{\mu}M$ indomethacin), guanylate cyclase inhibitors ($10{\mu}M$ ODQ and $30{\mu}M$ methylene blue) and $Ca^{2+}$ transport blocker ($10{\mu}M$ ryanodine) did not affect the relaxant effects of $MgSO_4$. $Ca^{2+}$ channel blockers ($0.3{\mu}M$ nifedipine and $0.5{\mu}M$ veropamil) completely decreased the relaxant effects of $MgSO_4$ in +E and -E aortic rings. However, in $Ca^{2+}$-free medium, $MgSO_4$-induced vasorelaxation was potentiated and this response was inhibited by nifedipine. Protein kinase C (PKC) inhibitors ($1.0{\mu}M$ staurosporine, $0.5{\mu}M$ tamoxifen and $0.1{\mu}M$ H7) or PLC inhibitor ($100{\mu}M$ NCDC) markedly decreased the relaxant effects of $MgSO_4$ in +E and -E aortic rings. In vivo, infusion of $MgSO_4$ elicited significant decreases in arterial blood pressure. After intravenous injection of nifedipine ($150{\mu}g/kg$) and NCDC (3 mg/kg), infusion of $MgSO_4$ inhibited the $MgSO_4$-lowered blood pressure markedly. However, after introvenous injection of saponin (15 mg/kg), L-NNA (3 mg/kg), L-NAME (5 mg/kg), indomethacin (2 mg/kg), methylene blue (15 mg/kg) and aminoguanidine (10 mg/kg) failed to inhibit it. These results suggest that endothelial NQ-cGMP or prostaglandin pathway is not involved in vasorelaxant or hypotensive action of $Mg^{2+}$ and that these effects are due to the inhibitory action of $Mg^{2+}$ on the $Ca^{2+}$ channel or PLC-PKC pathway, and are due to the competitive influx of $Mg^{2+}$ and $Ca^{2+}$ through the $Ca^{2+}$ channel.

Effects of 17β-Estradiol on Colonic Permeability and Inflammation in an Azoxymethane/Dextran Sulfate Sodium-Induced Colitis Mouse Model

  • Song, Chin-Hee;Kim, Nayoung;Sohn, Sung Hwa;Lee, Sun Min;Nam, Ryoung Hee;Na, Hee Young;Lee, Dong Ho;Surh, Young-Joon
    • Gut and Liver
    • /
    • v.12 no.6
    • /
    • pp.682-693
    • /
    • 2018
  • Background/Aims: Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases (IBDs) such as ulcerative colitis. This dysfunction is caused by increased permeability and the loss of tight junctions in intestinal epithelial cells. The aim of this study was to investigate whether estradiol treatment reduces colonic permeability, tight junction disruption, and inflammation in an azoxymethane (AOM)/dextran sodium sulfate (DSS) colon cancer mouse model. Methods: The effects of $17{\beta}$-estradiol (E2) were evaluated in ICR male mice 4 weeks after AOM/DSS treatment. Histological damage was scored by hematoxylin and eosin staining and the levels of the colonic mucosal cytokine myeloperoxidase (MPO) were assessed by enzyme-linked immunosorbent assay (ELISA). To evaluate the effects of E2 on intestinal permeability, tight junctions, and inflammation, we performed quantitative real-time polymerase chain reaction and Western blot analysis. Furthermore, the expression levels of mucin 2 (MUC2) and mucin 4 (MUC4) were measured as target genes for intestinal permeability, whereas zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 4 (CLDN4) served as target genes for the tight junctions. Results: The colitis-mediated induced damage score and MPO activity were reduced by E2 treatment (p<0.05). In addition, the mRNA expression levels of intestinal barrier-related molecules (i.e., MUC2, ZO-1, OCLN, and CLDN4) were decreased by AOM/DSS-treatment; furthermore, this inhibition was rescued by E2 supplementation. The mRNA and protein expression of inflammation-related genes (i.e., KLF4, NF-${\kappa}B$, iNOS, and COX-2) was increased by AOM/DSS-treatment and ameliorated by E2. Conclusions: E2 acts through the estrogen receptor ${\beta}$ signaling pathway to elicit anti-inflammatory effects on intestinal barrier by inducing the expression of MUC2 and tight junction molecules and inhibiting pro-inflammatory cytokines.

Anthocyanins from Hibiscus syriacus L. Attenuate LPS-Induced Inflammation by Inhibiting the TLR4-Mediated NF-κB Signaling Pathway

  • Karunarathne, Wisurumuni Arachchilage Hasitha Maduranga;Molagoda, Ilandarage Menu Neelaka;Lee, Kyoung Tae;Choi, Yung Hyun;Kang, Chang-Hee;Jeong, Jin-Woo;Kim, Gi-Young
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.92-92
    • /
    • 2019
  • Excessive or chronic inflammation contributes to the pathogenesis of many inflammatory diseases such as sepsis, rheumatoid arthritis, and ulcerative colitis. Hibiscus syriacus L. has been used as a medicinal plant in many Asian countries, even though its anti-inflammatory activity has been unclear. Therefore, we investigated the anti-inflammatory effect of anthocyanin fractions from the H. syriacus L. varieties Pulsae (PS) on the lipopolysaccharide (LPS)-induced expression of proinflammatory mediators and cytokines in RAW264.7 macrophages. PS suppressed LPS-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) secretion concomitant with downregulation of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, PS inhibited the production of proinflammatory cytokines such as tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), and IL-12 in LPS-stimulated RAW264.7 macrophages. Further study showed that PS significantly decreased LPS-induced nuclear translocation of the nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) subunits, p65 and p50. Molecular docking data showed that many anthocyanins from PS fit into the hydrophobic pocket of MD2 and bound to Toll-like receptor 4 (TLR4), indicating that PS inhibits the TLR4-MD2-mediated inflammatory signaling pathway. Especially, apigenin-7-O-glucoside most powerfully bound to MD2 and TLR4 through LYS122, LYS122, and SER127 at a distance of $2.205{\AA}$, $3.098{\AA}$, and $2.844{\AA}$ and SER441 at a distance of $2.873{\AA}$ (docking score: -8.4) through hydrogen bonding, respectively. Additionally, PS inhibited LPS-induced TLR4 dimerization/expression on the cell surface, which consequently decreased MyD88 recruitment and IRAK4 phosphorylation. PS completely blocked LPS-mediated mortality in zebrafish larvae by diminishing the recruitment of neutrophil and macrophages accompanied by low levels of proinflammatory cytokines. Taken together, our results indicate that PS attenuates LPS-mediated inflammation in both in vitro and in vivo by blocking the TLR4/MD2-MyD88/IRAK4-$NF-{\kappa}B$ axis. Therefore, PS might be used as a novel modulatory candidate for effective treatment of LPS-mediated inflammatory diseases.

  • PDF

Atractylenoide II Isolated from Atractylodes macrocephala Inhibited Inflammatory Responses in Lipopolysaccharide-induced RAW264.7 Macrophages and BV2 Microglial Cells (백출에서 분리된 Atractylenolide II의 RAW264.7 대식세포와 BV2 미세아교세포에서의 항염증 효과)

  • Jin, Hong-Guang;Kim, Kwan-Woo;Li, Jing;Im, Hyeri;Lee, Dae Young;Yoon, Dahye;Jeong, Jin Tae;Kim, Geum-Soog;Oh, Hyuncheol;An, Ren-Bo;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.244-254
    • /
    • 2020
  • Atractylodes macrocephala is a perennial herb and is a member of the Compositae family. This plant is known to contain various bioactive constituents indicating anti-inflammatory, neuroprotective, anti-oxidant, immunological enhancement, and gastroprotective effects. In this investigation, we isolated four compounds with similar chemical structures from A. macrocephala, and evaluated their anti-inflammatory effects. Among the four compounds, compound 2(atractylenolide II) showed the second-best inhibitory effect on the lipopolysaccharide(LPS)-induced production of nitric oxide in RAW264.7 macrophages and BV2 microglial cells. Compound 2 also inhibited the LPS-induced the production of prostaglandin E2(PGE2), and the expression of inducible nitric oxide synthase(iNOS) and cyclooxygenase(COX)-2 proteins in both cells. In addition, compound 2 suppressed the production of pro-inflammatory cytokines including interleukin(IL)-1β, IL-6, and tumor necrosis factor(TNF)-α. These inhibitory effects were contributed by inactivation of nuclear factor kappa B(NF-κB) and mitogen-activated protein kinases(MAPKs) pathways by treatment with compound 2. This compound did not induce the expression of heme oxygenase(HO)-1 protein indicating that the anti-inflammatory effect of compound 2 was independent with HO-1 protein. Taken together, these results suggested that atractylenolide II can be a candidate material to treat inflammatory diseases.

A Study on Inflammation and Itching of Cyperus rotundus Ethyl Acetate Fractions (향부자 에틸아세테이트 분획물의 염증 및 가려움증에 관한 연구)

  • Do Gyu, Kim;Ji Yeon, Lee;Sohyun, Mun;Yukyung, Kim;Nari, Kim;Ah Reum, Jung;Jun-Hwan, Jang;Jae-Soeb, Lee;Sang Bae, Han;Jun-Tae, Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.4
    • /
    • pp.303-312
    • /
    • 2022
  • In this study, Cyperus rotundus (C. rotundus) was fractionated into ethyl acetate to identify α-cyperone, a representative indicator, and its ethyl acetate fraction were evaluated to confirm the possibilityas a functional cosmetic ingredient. As a result of HPLC analysis, it was confirmed that the content of α-cyperone was 5.243%. In order to verify the inflammatory relief effect of the ethyl acetate fraction from C. rotundus (EAFC) and α-cyperone, it was confirmed that nitric oxide (NO) production inhibitory ability in RAW 264.7 macrophages induced an inflammatory reaction with lipopolysaccharide (LPS). Real-time qPCR analysis confirmed inhibition of mRNA expression level of inflammatory factors, IL-1β, IL-6, TNF-α, COX-2 and iNOS. As a results of conducting a clinical study using a simple cosmetic formulation containing EAFC, it was confirmed that the skin irritation stimulated by sodium lauryl sulfate (SLS) was calming and relieving itching. Through these results, it is believed that the C. rotundus can be used as a natural cosmetic ingredient that has the effect of inhibiting inflammation and relieving itching.

Gastroprotective Activity of Curcumae Longae Rhizoma against Gastric Ulcer in Mice (위궤양 유발 마우스모델에서 강황(薑黃) 추출물의 위 보호 효과)

  • Oh, Min Hyuck;Kim, Min Ju;Shin, Mi-Rae;Park, Hae-Jin;Seo, Bu-Il;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.35 no.3
    • /
    • pp.17-24
    • /
    • 2020
  • Objectives : The objective of this study was to evaluate the gastric protective effect of Curcuma Longae Rhizoma (CLR) in 150 mM HCl/60% ethanol induced gastric ulcer (GU) in mice. Methods : Forty ICR mice were divided into five groups (n=8/Group): Nor group; Normal, Veh group; GU control, SC group; GU + sucralfate 10 mg/kg, CL; GU + CLR 30% ethanol extract 100 mg/kg, CH group; GU + CLR 30% ethanol extract 200 mg/kg. Then, mice were orally administered with 150 mM HCl/60% ethanol and caused GU. After 1 hr, mice were sacrificed, and blood and stomach tissue were collected. Results : CLR showed significance scavenging effects in 1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) radical scavenging activities (DPPH IC50; 78.18 ± 0.60 ㎍/㎖, ABTS IC50; 55.91 ± 1.86 ㎍/㎖). CLR significance reduce inflammatory-related factors such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin-6 (IL-6) via nuclear factor kappa B (NF-κB) inactivation. In addition, the activation of nuclear factor erythroid2-related factor 2 (Nrf2) significantly led to up-regulation of anti-oxidant enzymes including factors heme oxygenase-1 (HO-1), super oxide dismutase (SOD), and glutathione peroxidase-1/2 (GPx-1/2). Conclusions : Our discovery provides that CLR possesses anti-oxidant and anti-inflammatory effects. Hence, CLR may ameliorate the development of gastric ulcer though the inhibition of NF-κB inflammatory pathway and the elevation of Nrf2 anti-oxidant pathway.

Anti-inflammatory effect of naringenin-7-O-phosphate in LPS-induced RAW 264.7 cells (LPS로 유도된 RAW 264. 7 대식세포에서 Naringenin-7-O-phosphate의 항염증 활성)

  • Hyehyun Hong;Tae-Jin Park;Byeong Min Choi;Yu-Jung Yi;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.46-52
    • /
    • 2023
  • The most abundant flavanone of grapefruits, naringenin (NN), is well known for its hepatoprotective, anti-lipid peroxidation and anti-carcinogenic effects. We generated three derivatives from NN using this technique in previous studies. Among them, it was confirmed that naringenin-7-O-phosphate (N7P), whose biological and physicochemical properties were not reported, showed a water solubility 45 times higher than that of NN. Therefore, in this study, the anti-inflammatory activity was evaluated in RAW 264.7 cells to investigate the potential physiological activity of N7P. As a result, N7P showed nitric oxide (NO) inhibitory activity at concentrations that did not show toxicity. In addition, prostaglandin E2 (PGE2) showed significant inhibitory activity from the lowest concentration of 12.5 μM and showed increased inhibitory activity compared to NN. In addition, as a result of western blot, N7P showed increased cyclooxygenase-2 (COX-2) inhibitory activity than NN, and effectively inhibited NO and PGE2 by significantly inhibiting their expression pathways. N7P also inhibited inflammatory cytokines, including tumor necrosis factor-α, interleukin-6. Based on these results, we propose that N7P can be used as a potent antiinflammatory agent.

Effects of Ethanol Extract from Lathyrus palustris on Anti-inflammation Response of RAW 264.7 Cell (RAW 264.7 대식세포 염증반응에 대한 털연리초 에탄올 추출물의 항염증 효과)

  • Nam, Jung Hwan
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.287-292
    • /
    • 2020
  • Lathyrus palustris often used as a treatment for inflammation of the kidneys in Korean traditional medication. Generally, drugs for arthritis have anti-inflammatory and antinociceptive properties. However, the validity of the anti-inflammatory effect has not been scientifically investigated so far. Therefore, the purpose of the research was to investigate the latent anti-inflammatory ability of L. palustris using the ethanol extract. To evaluate the anti-inflammatory activities, we examined the inflammatory arbitrators such as a nitric oxide (NO) and prostaglandin E2 (PGE2) on RAW 264.7 cells. Our results indicated that ethanol extract significantly inhibited the lipopolysaccharide E (LPS) derived PGE2 production in RAW 264.7 cell. The inhibitory activity of ethanol extract for PGE2 tests with inhibition ratio showed in 40 ㎍/mL. Overall, PGE2 tests had a higher inhibitory effect on inflammation than NO tests. This result anticipated that the ethanol extract from L. palustris is a good candidate for developing the origin of anti-inflammatory agents.

Anti-inflammatory Constituents of the Aerial Parts of Trichosanthes kirilowii in BV2 Microglial Cells (괄루경엽의 BV2 미세아교세포에서의 항염증 활성 성분)

  • Li, Xiao Jun;Kim, Kwan-Woo;Ko, Wonmin;Kim, Dong-Cheol;Yoon, Chi-Su;Liu, Xiang Qian;Kim, Jong-Su;Jang, Kyu-Kwan;Kang, Dae-Gil;Lee, Ho-Sub;Oh, Hyuncheol;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.7-11
    • /
    • 2016
  • The aerial part of Trichosanthes kirilowii Maxim. (Cucurbitaceae), has long been used in traditional Korean and Chinese medicines for the treatment of heatstroke. We isolated and identified three flavones, luteolin-7-O-${\beta}$-D-glucopyranoside(1), luteolin-4'-O-${\beta}$-D-glucopyranoside(2), luteolin(3) from its methanolic extract. In the present study, we found that luteolin attenuates the lipopolysaccharide(LPS)-induced inflammation in BV2 microglial cells. Luteolin significantly inhibited LPS-induced production of pro-inflammatory mediators such as nitric oxide(NO) and prostaglandin $E_2(PGE_2)$ in BV2 microglia in a concentration-dependent manner without cytotoxic effect. Luteolin dose-dependently suppressed the protein expression of inducible nitric oxide synthase(iNOS) and cyclooxygenase-2(COX-2). In addition, luteolin also showed significant induction of heme oxygenase(HO)-1. These results suggest that both the aerial part of T. kirilowii and luteolin may be good candidates to regulate LPS-induced inflammatory response.

Inhibitory Effects of Flavonoids Isolated from the Leaves of Stewartia koreana on Nitric-oxide Production in LPS-stimulated RAW 264.7 Cells (노각나무 잎에서 분리된 플라보노이드에 의한 대식세포에서 산화질소 생성 억제효과)

  • Lee, Seung-Su;Bang, Myun-Ho;Park, Se-Ho;Chung, Dae-kyun;Yang, Seun-Ah
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.509-516
    • /
    • 2018
  • Five phenolic compounds were isolated from the ethyl acetate fraction of leaves from Stewartia koreana, and their nitric-oxide (NO) inhibitory activities were measured to identify the major active constituents responsible for the efficacy of the extract against inflammatory reactions. These five compounds were quercetin (1), quercitrin (2), hyperin (3), quercetin-3-O-(6"-O-galloyl)-${\beta}$-D-galactopyranoside (4), and kaempferol 3-O-[2",6"-di-O-(trans-p-coumaroyl)]-${\beta}$-D-glucopyranoside (5). Among the separated compounds in the EtOAc fraction, compounds 4 and 5 were isolated for the first time, and no study has yet reported their anti-inflammatory effects. The compounds were identified by spectroscopic analysis, and the isolated compounds showed significant NO inhibitory effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Compound 5 showed the most potent inhibitory effect (63.35% inhibition) against LPS-induced NO production compared to that of compound 1 (17.17%), compound 2 (5.0%), compound 3 (3.92%), and compound 4 (6.32%) at $10{\mu}g/ml$ concentration. NO production was inhibited by suppressing the protein expression of inducible nitric-oxide synthase in LPS-stimulated RAW 264.7 macrophages. These results indicate that kaempferol 3-O-[2",6"-di-O-(trans-p-coumaroyl)]-${\beta}$-D-glucopyranoside might be the major active compound responsible for the anti-inflammatory effects of S. koreana.